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ABSTRACT 

Semiconducting chalcogenide materials are widely used in various electronics devices 

and have characteristics that make them attractive for practical use in various fields. In 

particular, an important application of chalcogenide materials is their use in photovoltaics to 

convert solar energy into electricity. Promising materials for solar energy are chalcogenide 

semiconductors with chalcopyrite structure having the formula I-III-VI2. These materials 

reveal a number of advantages over others and have attracted the attention of researchers. 

The optimal band gap and high absorption coefficient make chalcogenides promising as thin-

film absorbing materials in high-performance heterojunction solar cells. One of the 

representatives of such materials is copper indium gallium selenide CuIn1–xGaxSe2 (CIGS). 

It demonstrates the efficiency of solar energy conversion up to 23.4% and in the 

perovskite/CIGS tandem solar cells – 24.2%. Therefore, the study of semiconductor 

materials is an important and relevant task. 

Despite the large number of complex and expensive experimental research, theoretical 

modeling within different approaches takes an important place in the study and search for 

new functional materials. Therefore, the process of new materials creation and their 

properties optimization for the different applications can be expensive and not efficient 

without predictive theoretical guidance. Thus, the preferable initial stage of new materials 

design is the computer modeling and simulations of their physical properties. 

The aim of the present work was to investigate the structural, electronic, optical, elastic 

and vibrational properties of the I-III-VI2 (I = Cu, Ag, III = Al, Ga, In, VI = S, Se, and Te) 

crystals using theoretical methods. To date, a comprehensive theoretical study of the 

properties of crystals of the studied group has not been performed. There are some studies 

of materials of this group, the analysis of which is complicated by the use of different 

methods and approximations that give different limitations and, as a consequence, different 

deviations from the experiment. In the presented work a series of theoretical studies of the 

physical properties of the I-III-VI2 (I = Cu, Ag, III = Al, Ga, In, VI = S, Se, Te) crystal family 

were carried out within the unified approach. 

The band-energy structures of eighteen crystals of the titled group were studied and 

the origin of their energy bands was clarified using the density functional theory together 

with the LDA and GGA exchange-correlation functionals. The effect of changes in the 

cationic-anionic composition on the structure of these electronic levels in crystals has been 
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elucidated. Quantitative and qualitative characteristics of the band structures of these crystals 

are evaluated. 

The disadvantages of applying the standard calculation method for energy levels 

corresponding to d-electrons for crystals with In and Ga ions are shown. For such crystals it 

is proposed to use calculations with Hubbard corrections (DFT + U) to take into account the 

drawbacks of standard calculation methods. 

The optical spectra of crystals of I-III-VI2 group, including dielectric functions, 

absorption spectra, refractive indices, etc., were calculated. The possibility of using these 

materials as absorbing layers in solar cells is shown. 

The linear electro-optics, electrogyration coefficients and second-order nonlinear 

susceptibility of AgGaS2 crystals are calculated in the frame of the DES model. Using 

dispersion of the electronic polarizability volumes calculated using the Lorentz–Lorenz 

formula, the value of nonlinear susceptibility for λ = 1064 nm is obtained. 

Elastic properties, which includes obtaining elastic coefficients Cij, bulk modulus B, 

Young’s modulus E, shear modulus G and Poisson's ratio v were calculated for eighteen 

crystals of the studied group. The tendency of changes of properties and their anisotropy at 

isomorphic substitutions of cationic-anionic composition is shown. 3D distribution surfaces 

of elastic modulus and their planar projections were constructed. These allowed to show 

visually the change of anisotropy when the composition of the material changes. 

The correlation analysis of structure-properties and properties-properties relations for 

selected quantities is carried out. A number of correlations were found that show the 

functional dependences between the physical parameters for the studied group of crystals. 

The peculiarities of the phonon spectrum in AgGaX2 crystals (where X = S, Se, Te) 

are clarified within the framework of harmonic approximation. A symmetric classification 

of vibrational modes is performed and the consistency of theoretical results to experimental 

ones is shown, which verifies the technique used. The structure and transformation of the 

phonon spectrum at isomorphic substitution of the S → Se → Te anions are shown. 

The possibility of controlling the optical, electronic and elastic properties of crystals 

by forming substitutional solid solutions on the example of the CuGa(S1–xSex)2 system for x 

= 0, 0.25, 0.5, 0.75, and 1 has been investigated. 

In conclusion, a comprehensive theoretical study of electronic structure, optical, elastic 

and vibrational properties of crystals of the I-III-VI2 group have been performed within the 

theory of density functional. The possibility of applying and modifying the properties of 

materials for efficient use as materials for solar energy is shown.  
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STRESZCZENIE 

Półprzewodnikowe materiały chalkogenkowe są szeroko stosowane w różnych 

urządzeniach elektronicznych i mają właściwości, które czynią je atrakcyjnymi do 

stosowania w różnych dziedzinach. W szczególności ważnym zastosowaniem materiałów 

chalkogenkowych jest ich wykorzystanie w fotowoltaice do przekształcania energii 

słonecznej w energię elektryczną. Obiecującymi materiałemi dla energetyki słonecznej są 

półprzewodniki chalkogenkowe o strukturze chalkopirytowej o wzorze I-III-VI2. Materiały 

te mają wiele zalet w porównaniu z innymi i przyciągnęły uwagę naukowców ze względu 

na optymalną przerwę energetyczną i wysoki współczynnik absorpcji, co czyni je 

obiecującymi jako cienkowarstwowe materiały pochłaniające w wysokowydajnych 

heterozłączowych ogniwach słonecznych. Jednym z przedstawicieli takich materiałów jest 

selenek miedziowo-indowo-galowy CuIn1–xGaxSe2 (CIGS). Wykazuje on efektywność 

konwersji energii słonecznej do 23.4%, a w ogniwach słonecznych tandemowych 

perowskit/CIGS – 24.2%. Dlatego badanie materiałów półprzewodnikowych jest ważnym i 

aktualnym zadaniem. 

Pomimo dużej liczby skomplikowanych i kosztownych badań eksperymentalnych, 

modelowanie teoretyczne w ramach różnych podejść zajmuje ważne miejsce w badaniach i 

poszukiwaniu nowych materiałów funkcjonalnych. W związku z tym proces tworzenia 

nowych materiałów i optymalizacji ich właściwości dla różnych zastosowań może być 

kosztowny i nieefektywny bez predykcyjnych wskazówek teoretycznych. Dlatego 

preferowanym początkowym etapem projektowania nowych materiałów jest modelowanie 

komputerowe i symulacje ich właściwości fizycznych. 

Celem niniejszej pracy było zbadanie właściwości strukturalnych, elektronowych, 

optycznych, sprężystych i wibracyjnych kryształów I-III-VI2 (I = Cu, Ag, III = Al, Ga, In, 

VI = S, Se i Te) metodami teoretycznymi. Do tej pory nie przeprowadzono kompleksowego 

teoretycznego badania właściwości kryształów badanej grupy. Istnieje kilka badań 

materiałów z tej grupy, których analizę komplikuje stosowanie różnych metod i przybliżeń, 

które dają różne ograniczenia i w konsekwencji różne odchylenia od eksperymentu. W 

prezentowanej pracy przeprowadzono szereg badań teoretycznych właściwości fizycznych 

kryształów rodziny I-III-VI2 (I = Cu, Ag, III = Al, Ga, In, VI = S, Se, Te) w ramach podejścia 

zunifikowanego. 
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Zbadano strukturę pasmowo-energetyczną osiemnastu kryształów wskazanej grupy i 

wyjaśniono pochodzenie ich pasm energetycznych wykorzystując teorię funkcjonału 

gęstości wraz z funkcjonałami wymienno-korelacyjnymi LDA i GGA. Wyjaśniono wpływ  

zmian składu kationowo-anionowego na strukturę tych poziomów elektronowych w 

kryształach. Oceniane są ilościowe i jakościowe charakterystyki struktur pasmowych tych 

kryształów. 

Pokazano wady stosowania standardowej metody obliczania poziomów 

energetycznych odpowiadających d-elektronom dla kryształów z jonami In i Ga. Proponuje 

się wykorzystanie obliczeń z poprawkami Hubbarda (DFT+U), aby uwzględnić wady 

standardowych metod obliczeniowych. 

Obliczono widma optyczne kryształów z grupy I-III-VI2, w tym funkcje dielektryczne, 

widma absorpcyjne, współczynniki załamania itp. Pokazano możliwość wykorzystania tych 

materiałów jako warstwy absorbującej w ogniwach słonecznych. 

W ramach modelu DES obliczono liniową elektrooptykę, współczynniki 

elektrowirowania i nieliniową podatność drugiego rzędu kryształów AgGaS2. 

Wykorzystując dyspersję elektronowych objętości polaryzowalności obliczonych ze wzoru 

Lorentza–Lorenza otrzymano wartość nieliniowej podatności dla λ = 1064 nm. 

Obliczono właściwości sprężyste dla osiemnastu kryształów z badanej grupy, w tym 

zachowanie współczynników sprężystości Cij, modułu sprężystości B, modułu Younga E, 

modułu ścinania G oraz współczynnika Poissona v. Pokazano tendencję do zmian 

właściwości i ich anizotropii przy izomorficznych podstawieniach składu kationowo-

anionowego. Skonstruowano trójwymiarowe powierzchnie rozkładu modułu sprężystości i 

ich rzuty planarne, co pozwoliło na wizualne ukazanie zmiany anizotropii przy zmianie 

składu materiału. 

Przeprowadzono analizę korelacyjną zależności struktura-właściwości i właściwości-

właściwości dla wybranych wielkości. Znaleziono szereg korelacji, które wykazują 

funkcjonalną zależność pomiędzy parametrami fizycznymi dla badanej grupy kryształów. 

Wyjaśniono osobliwości widma fononowego w ramach przybliżenia harmonicznego 

w kryształach AgGaX2 (gdzie X = S, Se, Te). Przeprowadzono symetryczną klasyfikacje 

modów oscylacyjnych i pokazano zgodność wyników teoretycznych z eksperymentalnymi, 

co weryfikuje zastosowaną technikę. Pokazano strukturę i transformację widma fononowego 

przy izomorficznym podstawieniu anionu S → Se → Te. 
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Zbadano możliwość kontrolowania właściwości optycznych, elektronowych i 

sprężystych kryształów poprzez tworzenie stałych roztworów podstawieniowych na 

przykładzie układu CuGa(S1–xSex)2 dla x = 0, 0.25, 0.5, 0.75 i 1. 

Podsumowując, możemy stwierdzić, że przeprowadzone są kompleksowe teoretyczne 

badania kryształów grupy I-III-VI2, a mianowicie struktury elektronowej, właściwości 

optycznych, sprężystych i wibracyjnych w ramach teorii funkcjonału gęstości. Pokazano 

możliwości zastosowania i modyfikacji właściwości materiałów w celu efektywnego 

wykorzystania jako materiałów do energii słonecznej. 
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1. INTRODUCTION 

 

 

Rapid increasing of energy consumption together with continuous use of the 

technologies based on combustion of the hydrocarbons can be defined as the key 

environmental problem nowadays. The permanent necessity of increasing the production of 

the electrical energy make the search of alternative sources of energy very actual. The use 

of solar energy is being given more and more attention on the planet. Conversion of the solar 

energy into electricity by using solar cells offers a unique opportunity for the environment 

friendly production of electrical energy and can provide the energetical independence of 

European countries. Various materials, both organic and inorganic, have been successfully 

tested for such photovoltaic (PV) applications. As a result, remarkable progress in this field 

has been achieved, [1−4] and the search for new materials with improved performance is 

never stopped. The use of solar cells is becoming increasingly popular year by year. These 

facts make research in this area extremely popular and important. The development of these 

technologies reduces the cost of materials and increases the efficiency of solar cells. Their 

application in different spheres gives hope that people will finally stop poisoning the Earth's 

atmosphere, which will positively affect their health and improve ecological situation. 

Nowadays considerable progress has been achieved in the development of 

experimental methods of chalcopyrite (CP) production. At the same time, very rapid 

advances in reliable computational methods based on the density functional theory (DFT) 

have paved a broad way towards increasing the importance of so-called “theoretical 

experiments”, when thoroughly performed calculations replace or forego experiments and 

even predict unknown materials and their properties [5,6]. Such "theoretical experiments" 

are relatively costless, if compared to the real laboratory equipment; however, the results of 

such calculations serve as extremely useful guides for setting up a proper direction in the 

search for new efficient materials.   

Chalcopyrite compounds form a very large and versatile group of materials, which 

are used as active absorbers in solar cells [5, 6], spintronics [7,8] and IR lasers [5,9], LED 

etc. Typically, they are ternary semiconductors with general chemical formula I-III-VI2 (I = 

Cu, Ag, III = In, Ga, Al, VI = S, Se, Te etc.) or II-IV-V2 (II = Be, Mg, Zn, Cd, IV = C, Si, 

Ge, Sn, V = N, P, As, Sb etc). There exist a very few systematic studies of the CP, which 
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would offer comparison of their main properties and explanation of differences or 

similarities existing between various compounds. This will fill in this gap by consistent and 

systematic studies of a wide range of physical properties of CP crystals.  

Since I-III-VI2 ternary semiconductors with chalcopyrite structure have been shown 

to be very suitable materials for solar cell panels, this study will be devoted to the theoretical 

investigation of titled group of CP materials using an ab initio method based on DFT.  

The crystals of I-III-VI2 group are attractive objects for study both from fundamental 

and applied points of view because of their potential applications. They can be used as active 

elements for nonlinear optics, as optical filters, LED application, high-efficiency quantum 

dots for photocatalysis (for example CuGaS2 crystal [10]), sensors and, most prospective-in 

solar cell application. Also, possibility to produce the high quality thin films makes CP very 

attractive for thin-films sensors and solar cells. In the literature we can find separate 

researches concerning particular properties of the CP and few theoretical studies of band 

structure, optical as well as elastic properties [11]. A very few systematic study of the CP, 

which would offer comparison of their properties and establishing of general tendency of 

properties behavior during composition change motivate us to carry out such investigation.  

The goal of the presented study is the systematic and consistent study using the DFT 

of electronic, optic, elastic and other physical properties, as well as establishing of the 

relationship between the structure-property and property-property dependences of I-III-VI2 

ternary CP semiconductors for solar cells application.  

 

Object of study: band structure, peculiarities of the formation of electronic states of 

the valence band and the conduction band, the nature of the chemical bond in the crystals, 

optical, elastic and vibrational properties of ternary semiconductors of group I-III-VI2, 

influence of isomorphic substitution on structure and properties. 

 

Subject of study: ternary semiconductor crystals of group I-III-VI2 with chalcopyrite 

structure. 

 

The aim and tasks of the work 

The aim of the dissertation is an investigation of structural, electronic, optical, elastic and 

vibrational properties of the I-III-VI2 (I = Cu, Ag, III = Al, Ga, In, VI = S, Se, and Te) 

crystals using theoretical methods. 
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Thesis of work  

Modification of the cationic-anionic composition of I-III-VI2 crystals is an effective way of 

tuning the properties of the materials useful for photovoltaic applications. 

 

Hypothesis:  

1. Theoretical simulations allow to estimate effectively the quantitative and qualitative 

characteristics of I-III-VI2 crystals. 

2. The relationships between structure-property and property-property of I-III-VI2 group 

crystals can be revealed using theoretical calculations. 

3. A gradual change of the composition of the I-III-VI2 group crystals allows fine-tuning 

of the material parameters. 

4. The use of the DFT+U technique can correct some of the special shortcomings of the 

description of the interaction of d-electrons in I-III-VI2 systems. 

5. Variation of chemical composition (which includes partial or complete anion or cation 

substitution) should strongly affect the optical and electronic properties of solar cell 

materials. 

 

The tasks of the dissertation are:  

1. To investigate the electronic structure, genesis of electronic levels of crystals of I-III-VI2 

group with the structure of chalcopyrite using DFT methodology with different 

corrections. 

2. To study theoretically the nature of chemical bonding, optical functions and peculiarities 

of structure change during the isomorphic substitution of I-III-VI2 crystals. 

3. To calculate the elastic coefficients and elastic modules for I-III-VI2 crystals. 

4. To investigate the mechanical stability and propagation of acoustic waves in I-III-VI2 

crystals. To obtain the speed of acoustic waves propagation in materials and evaluate 

their anisotropy. 

5. To make a description of vibrational properties and lattice dynamics of the AgGaX2 

system (X = S, Se, and Te). To perform the symmetric analysis of vibrations. 

6. To investigate the effect of isomorphic substitution of S → Se in the CuGa(S1–xSex)2 

system on the structure, electronic, optical and elastic properties of the compound. 
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Scientific novelty:  

1. A complex theoretical study of electronic and physical properties of crystals with the 

structure of chalcopyrite belonging to I-III-VI2 group is performed for the first time in 

the framework of density functional theory, within unified approach and using LDA and 

GGA functionals. 

2. The possibility of correct description of electronic states using the DFT + U technique 

for correction of the position of electronic d-levels and band gap underestimation was 

shown for the first time. 

3. Nonlinear optical parameters for the AgGaS2 crystal were characterized within the 

dipole-dipole interaction electron-cloud shifting model. 

4. Based on the theoretical-group analysis of the three-dimensional structure of 

chalcopyrite crystals, the selection rules for optical dipole transitions are established. A 

symmetric analysis of vibrational spectra of I-III-VI2 crystals is performed. 

5. A number of structure-property and property-property dependences for crystals of I-III-

VI2 group are obtained. 

6. The formation of substitutional solid solution is shown to be an effective method of 

modification of structural, electronic, optical and elastic parameters of CuGaS2 crystals. 

7. It was shown that replacement of S → Se in the CuGa(S1–xSex)2 system have a 

significant sensitivity of the physical parameters to the composition of the compound, 

which allows controlling of its properties. The compounds with x = 0.68 have the lowest 

value of the deformation parameter η, which is consistent with the experiment. 
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2. LITERATURE REVIEW OF STRUCTURE AND PROPERTIES OF 

I-III-VI2 GROUP MATERIALS 

 

 

 

2.1. Structure and synthesis of I-III-VI2 (I = Cu, Ag, III = Al, Ga, In,  

VI = S, Se, and Te) crystals 

 

2.1.1. Structure and origin of I-III-VI2 group crystals 

 

The I-III-VI2 (or 
I III VI

2А В С ) crystals, where I = Cu, Ag, III = Al, Ga, In, VI = S, Se, 

and Te, are known to be crystallized in the chalcopyrite (CP) structure. These crystals are 

ternary semiconducting materials that belong to the group of diamond-like compounds. For 

this materials as a prototype phase is the CuFeS2 crystal (the group is named after the mineral 

CuFeS2 – chalcopyrite) [1]. Those materials are strongly related with the binary compounds 

АIIСVI and can be estimated by doubling of binary compound unit cell: 
I III VI

2А В С   = 2АIIСVI 

(АII – Zn, Cd, Hg; CVI – S, Se, Te). At the same time, binary structures are derived from 

crystals such as C, Ge, and Si.  

Let us consider in more detail the origin and relationship of chalcopyrites between 

several classes of semiconductor materials that are actively used in practice in electronics. 

In Fig. 2.1 depicted a schematic diagram showing the relationship of some semiconductor 

materials originated from a diamond-type structure. Today, one of the most famous materials 

used in modern semiconductor electronics is silicon. The silicon has a face-centered cubic 

diamond-like lattice. One way to form new materials from the structure of this crystal is to 

use a chemical substitution process. The easiest way is to replace one chemical element with 

atoms of the same group. Thus, crystals such as C and Ge can be obtained. Other, more 

complex compounds can be obtained by replacing a combination of elements that together 

must satisfy the octet rule which states that each atom can combine either by transfer of 

valence electrons from one atom to another atom must lose or gain electrons in order to 

achieve an octet. A semiconductors of group-IV element (С, Si, Ge) crystallize in the 

structure with tetrahedral bonds and four valence electrons. According to the Grimm-

Sommerfeld rule [2], different combinations of compounds with the same tetrahedral bonds 
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are possible if the average number of valence electrons remains four. Since this condition 

holds for Si, the other materials derived from Si also have a tetrahedral structure. 

 

 

Figure 2.1. The origin of the binary, ternary and quaternary semiconductors derived from the face 

centered cubic structure of IV-elements. 

 

A binary structure can be derived from the diamond structure by replacing the group-

IV element by either one group-III and group-V element or by one group-II and group-VI 

element. This crystal structure is called zinc blende (ZB) structure [3]. An example of a 

material with a ZB structure are crystals ZnS, ZnSe (the name stems from the mineral ZnS) 

shown in the illustration on Fig. 2.2. This structure is very common for semiconductors e.g. 

GaAs, GaP, InAs, InSb, CdTe, etc. Crystals with the ZB structure has a unit cell with the 

space group symmetry F-43m (
2

dT ). The structure of this crystals is disordered and is 

characterized by cationic disorder.   

From binary compounds, as shown in Fig. 2.1 and 2.2, it is possible to form ternary 

semiconductor materials of group I-III-VI2 by performing the ordered substitution of 

elements of group II. If the group-II element is further replaced by half a group-I and half a 

group-III element, the chalcopyrite structure is formed. Chalcopyrite materials at the normal 

conditions has a body centred Bravais lattice. The crystal has a tetragonal symmetry with the 

42I d (
12

2dD ) symmetry (space group #122). The crystal cell has four formula units (Z = 4). 

As already mentioned, these materials are formed from three types of atoms. Each atom of 

groups I and III is tetragonally bonded to four VI-atoms. The lowering of the symmetry 
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 – C  – Zn;  – S  – Cd;  – Ag;  – S  – Cu;  – Ga;  – S 

a) b) c) d) 
Figure 2.2. The wiev of an elementary cell for representatives of some crystalline groups derived 

from the diamond structure: a) face-centered cubic lattice of diamond β-prototype, C, b) ZnS – face-

centered cubic lattice of sphalerite, (prototype ZnS), c) face-centered tetragonal lattice of thiogalate 

(prototype CdGa2S4), d) body-centered tetragonal lattice of chalcopyrite (prototype CuFeS2). 

 

leads to significant differences between these two tetrahedral structures. In the chalcopyrite 

structure, each A and B cation is bonded to four C nearest neighbors and each anion has two 

A cations and two B cations as nearest neighbors. Consequently, the cations form two 

separate AC4 and BC4 tetrahedra, while the corners of the anion-centered tetrahedron are 

occupied by two pairs of A and B atoms. Moreover, while the anion has twelve other anions 

as second nearest neighbors (as in the ZB structure), each cations has four cations of the 

same kind and eight cations of the other kind as second nearest neighbors. For instance, the 

cation A has 4A cations (2 in the y-z plane and 2 in the x-z plane) and 8B cations (4 in the x-

y plane, 2 in the x-z plane and 2 in the x-z plane) as second nearest neighbors [4]. 

The presence of two cations with different chemical properties introduces in the cell 

two kinds of structural distortions, one geometrycal (tetragonal distortion) and one 

crystallographic (internal distortion). The former takes into account the compression or 

dilatation of the crystal lattice along the z-axis and is measured by dimensionless parameters 

like the axial ratio ρ = c/a between the lattice parameters, the tetragonal deformation η = 

c/2a or the tetragonality parameter δ = 2 – c/a. 

In the ABC2 compounds, the η values range from 0.885 for MgSiP2 to 1.00, for 

CuInS2. The latter is a consequence of the unequality of the cation-anion bond lengths, 

according to which the equilibrium position of the anion is not exactly at the center of the 

relative tetrahedron (Fig. 2.3). In other words, the anion, which in the ZB lattice occupies 
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the position uzb = l/4, is shift along the x or y axes by an amount σ = u – uZB. In general, the 

anion is shifted toward the pair of the high valent cations, but in the CuBIIIC2
VI (BIII = In, Tl; 

CVI= S, Se, Te) and ZnSnC2
V (CV = P, As, Sb) compounds, a displacement in the opposite 

direction is found. The σ values range from –0.06 for CuT1S2 to about +0.06 for AgGaS2. 

The effect of the structural distortions spreads all over the crystal lattice, involving 

variations in the interatomic distances and bond angles. Summarizing the literature 

information about structure of CP materials, the following items can be singled [4]: 

1. The bond lengths A–C and B–C become functions of the parameters η, u, and a; 

2. The AC4 and BC4 tetrahedra are distorted, each of them leading to a pair of anion-

anion distances and a pair of anion-cation-anion angles, these latter with multiplicity 4 and 

2; 

3. The anion-centered tetrahedron gives rise to two angles for the A–C–B interaction 

and one angle for each A–C–A and B–C–B interactions; 

4. The cation-cation distances are independent of the internal distortion. 

The detailed structure of the unit cell of the CP crystal is shown in Fig. 2.3 a. Here 

green-type I atoms, red – III, and yellow is the atoms of group VI. Tetragonal deformation 

is characterized by the deviation of the unit cell parameter c from the doubled value of the 

a-parameter, which describe the unit cell dimentions a in ZB structure. That is, this 

parameter characterizes the general deviation of the structure of CP from the ZB. The 

parameter of tetragonal deformation is usually introduced as a geometric parameter η = c / 

2a, where a and c are the unit cell parameters. This parameter for CP can be non equal to 

unity (less than one). The second parameter of internal curvature is the displacement of the 

anion from its ideal tetrahedral position by the u value. The anions are shifted from their 

ideal tetrahedral positions by the value of u, which is a function of the lattice parameters. 

The u is the function of unit cell parameter: 

 
2 2

I-VI III-VI

2

1

4

R R
u

a

 
   
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.    (2.1) 

If we express the u parameter through a and c, the Eq. 2.2 can be written as  
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Presence of two cationic sublattices, rather than one, leading to the existence of two near-

neighbor chemical bonds A – C and B – C. Generally, the bond length of A – C and B – C 

are different (none equal) RAC ≠ RBC. Two bond lengths can be described byexpressions [1]: 

1
2 2

2 (1 )

16
ACR a u

 
  

 
,     (2.3) 

1
2 2 2

2 1 (1 )

2 16
BCR a u

  
    

   
.   (2.4) 

Tetrahedral coordination assumes that the type of chemical bond is substantially 

covalent with sp3 hybridization. Because atoms are different, there is an ionic bond 

component. Comparing the crystal lattice of CP with ZB, we can see that for the structure of 

ZB binary compounds, such as GaAs, each atom has four identical cations as the nearest 

neighbors. All four bond lengths are identical. Accordingly, the charge distribution around 

these bonds is also the same. In this case, it corresponds to the values of the lattice 

deformation parameters for zinc blende u = 0.25 and η = 1. At the same time, for crystals of 

the CP group, the equilibrium positions of the cation are closer to one pair of cations than to 

another. For CP we refer this case as non-ideal case (u ≠ 0.25 and η ≠ 1). Thus, the two near-

neighbor distances A – C and B – C can be calculated by Eq. 2.3 and Eq. 2.4. As a result of 

changes in bond lengths compared to ZB, which has a significant impact on the properties 

of the material and the band gap. Chalcopyrites have a low packing factor (are loosely packed 

crystals). The positions of atoms of different types in the cell of chalcopyrite group I-III-VI2 

crystal (in Wyckoff notation) are as follows: 

I – 4a: (0, 0, 0) 

III – 4c: (0.0, 0.0, 0.5) 

VI – 8d: (u, 0.25, 0.125) 

where u is the parameter of anion displacenemt. The u parameter corresponds to only for the 

х coordinate of anion for those pure systems, then whole the y and z component remain the 

same.  

As presented in Fig. 2.3 b each A and B atom is tetrahedrally coordinated to four C 

atoms, while each C atom is again tetrahedrally coordinated to two A and two B atoms by 

sp3 bonds. In fact, all the features of chalcopyrite compounds arise due to the relative 
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ordering (and non-equivalence) of these two different bonds. This inequality is the reason 

for considering functional applications in nonlinear optics. 

  

a)     b) 

Figure 2.3. Structure of the chalcopyrite type crystal’s unit cell (a) and the elementary 

morphologically the most important component of diamond-like structures, an irregular tetrahedron 

with shifted by u anion (a common case consisting of an anion C surrounded by two cations A and 

two cations B). 

 

The scheme of formation of valence bonds in compounds AIBIIIC2
VI is as follows 

(Fig. 2.4). Two atoms of chalcogen give the atoms of the elements of group I and group III 

four electrons. The fifth, missing electron, to fill all empty p-orbitals, is formed by mating 

s2 - electrons of the element of the III group. As a result of this, and also the subsequent 

hybridization, all conditions for emergence of tetrahedral hybrid covalent bonds are created. 

 

 

ground state   compound 

Figure 2.4. Scheme of chemical bonds formation in АIВIIIСVI
2 compound. 

 

All compounds of this group are characterized by an exponential dependence of the 

specific electrical conductivity on temperature and have large values of thermo-
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electromotive force and photoconductivity. In this group of tetrahedral phases, as well as in 

binary semiconductors AIIBVI, the properties naturally change with increasing atomic masses 

of the components. Thus, argentum-containing compounds melt at a lower temperature than 

the same type of copper-containing compounds. During the transition from gallium-

containing to thallium-containing compounds, there is also a decrease in the melting 

temperature and the band gap of these compounds. The practical application of these 

compounds lies in the same field as the compounds AIIBVI [5]. 

As can be seen from Fig. 2.1. similarly, to the approach discussed above, it is possible 

to move to more complex quaternary materials. Thus, instead of atoms of groups III 

incorporation of the atoms of II and IV group allows to I2-II-IV-VI4 crystals can be obtained. 

 

 

2.1.2. Growing of I-III-VI2 group crystals 

 

Both structural and physicochemical properties of the material depend on the 

composition and stoichiometry. Therefore, the development of technologies for obtaining 

materials is a continuous process aimed at obtaining a method of synthesis of the material of 

predetermined quality with minimal cost. Depending on the type of synthesized material 

(single crystal, polycrystal, thin films, nanoparticles) use certain methods of synthesis. 

The choice of method for crystals growing depends on a number of factors inherent in 

this material. In particular, they include the following [1]: 

 the compound chemical reactivity and that of its elements, 

 the elemental vapor pressures 

 growth-temperature dissociation pressure of the compound 

 mealting point of the compound, whether the compound melts or freezes congruently 

or incongruently 

 the degree to which a single phase is maintained given deviation from stoichiometry 

 presence/absence and nature of phase transitions.  

As a result of these many considerations, the difficulty of growth tends to increase 

significantly for greater numbers of constituent atomic elements; thus, growth quality of 

ternary semiconductors has lagged behind that of their binary counterparts. 

Chalcopyrites are generally grown in closed system due to the affinity to oxygen of 

the constituent elements. Growth methods for I-III-VI2 and II-IV-V2 include chemical vapor 
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deposition and direct melt techniques including directional solidification. ZnGeP2 

specifically has been grown through the latter class of methods: the vertical Bridgman 

method  [6–8], vertical gradient freeze [9], and horizontal gradient freeze [10] techniques.  

One of the popular methods of crystal synthesis is the method of crystal growing from 

melt. For crystals of the chalcopyrite group, the following compounds are obtained in two 

ways: 1) by slow heating of the calculated amounts of starting elements in pumped quartz 

ampoules by the reaction, for example,  

Cu + In + 2Se = CuInSe2,    (2.5) 

according to the selected mode of synthesis; 2) fusion of chalcogenides of metals of groups 

I and III in equimolar ratios, by reaction, for example,  

Cu2Se + In2Se3 = 2CuInSe2.     (2.6) 

In both cases, vibration mixing improves the results of the synthesis, due to better mixing of 

the molten components, which eliminates the phenomenon of liquation in the alloy, and 

prolonged annealing at elevated temperatures improves its homogenization [5]. 

 

Figure 2.5. Photograph of synthesized AgGaS2 polycrystal by two temperature vapor 

transport method [11]. 

 

An example of crystal growth is the synthesis carried out in [11]. Here Yang et.al. [11] 

performed the synthesis of AgGaS2 crystals in the form of polycrystals were synthesized by 

two temperature vapor transport method and AgGaS2 single crystal were grown by vertical 

gradient freezing method. AgGaS2 polycrystalline materials were synthesized directly from 

high purity (99.9999%) Ag, Ga and S element by means of two temperature vapor transport 

method [12]. The general view of the polycrystalline AgGaS2 crystals is shown in Fig. 2.5. 

AgGaS2 single crystals were grown using vertical gradient freezing method from 

polycrystalline materials. AgGaS2 polycrystalline materials were put into a quartz ampoule 
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which was evacuated under 1 × 10−3 Pa before it was sealed. Then the sealed quartz ampoule 

was hung on a descent device which was driven by servo motor. The whole quartz ampoule 

was located in the upper zone of the growth furnace, the seed part was located at the 

temperature gradient area. The temperature of the upper zone of the furnace was 1050 °C, 

the temperature gradient was 10 °C/cm, and the temperature of the lower part of furnace was 

880 °C. After the quartz ampoule was heated to the setting temperature and hold for about 

48 h, then the temperature was cooled gradually from seed part to melt zone until the ingot 

temperature reach 990 °C. After growth, the whole furnace was cooled by 50 °C/h to room 

temperature and 45 mm diameter, 140 mm length as-grown ingot was obtained as shown in 

Fig. 2.6 a). 

   

a)     b)     c) 

Figure 2.6. Photos of the grown single crystals of a) AgGaS2, b) CuAlS2, c) AgAlS2 chalcopyrite 

semiconductors reported in [11,13]. 

 

In [13], CuAlS2 and AgAlS2 chalcopyrite crystals have been grown by the chemical 

vapor transport method using ICl3 as the transport agent. About 10 g of the elements together 

with an appropriate amount of transport agent ICl3, was cooled with liquid nitrogen, 

evacuated to ∼10−6 Torr, and sealed in a quartz ampoule (22 mm OD, 17 mm ID, and 20 cm 

in length). The growth system is a horizontal three-zone tube furnace. The mixture 

compounds were heated to 875°C very slowly, which is necessary to avoid any explosions. 

The growth temperature was set as 800°C←875°C → 800°C with a gradient of −3.75°C∕cm. 

The process was maintained for 240 h to form large single crystals. After the growth process, 

the as-grown crystals show lightgreen color (CuAlS2) with apparent needle-like outline 

shape. The synthetic AgAlS2 crystals essentially form white and transparent color with 

apparent crystalline faces inside the quartz ampoule. The photos of the CuAlS2 and AgAlS2 

crystals taken from [13] is shown in Fig. 2.6. b) and c).  
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2.2. Physical properties of I-III-VI2 crystals 

 

 

2.2.1. Electronic structure  

 

Theoretical study of electronic structure 

Knowledge about the electronic structure of crystalline materials provides important 

information about the position of energy levels, which is useful for explaining the properties 

of physical processes that occur in the compound. Research on the electronic structure of 

materials is based on finding out the location, degeneracy, energy and dispersion of 

electronic levels for a particular compound that has a certain crystal structure and symmetry. 

Such studies can be divided into two major groups – experimental and theoretical. 

Theoretical methods of studying the electronic structure of the materials are to consider 

the structure of the material (crystallographic data), which is obtained from the experiment, 

and use of a models that provide information about electronic states. In particular, such 

methods include the Hartree-Fock method [14], the model potential model  [15], tight-

binding model [16], pseudopotential method [17], density functional theory (DFT) [18,19], 

Green function method [20,21], etc. Earlier, the use of these theories made it possible to 

study the electronic structure of semiconductor compounds, such as ZnS [22], GaAs [23], 

CdS, CdSe [24], Tl4SnS3 [25] and many other important materials for semiconductor 

electronics. Additionally, information about the symmetric properties of electronic states can 

be obtained using group theory, which was done, for example, for AgInP2S6 crystals [26], 

CsGeI3  [27], etc. 

A number of works [28–36] and many others are devoted to the theoretical study of 

the electronic structure of crystals of group I-III-VI2. In [28,37,38] Poplavnoi et.al. 

performed theoretical modeling of the band-energy structure of chalcopyrite crystals of 

group I-III-VI2. In these works, the calculation of the band structure was performed using 

the non-self-consistent empirical pseudopotential method [39]. This method neglects the 

noble-atom d-orbitals. In particular, in [28] the study of the band structure of AgGaS2, 

AgGaSe2, AgGaTe2 crystals was reported. 
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a)    b)    c) 

Figure 2.7. Band structure of the AgGaS2 a), AgGaSe2 b), and AgGaTe2 c) crystals. 

 

Calculations are performed with and without consideration of the displacement of 

anion atoms not changing the crystalline-lattice symmetry. The calculated band-energy 

structures for these crystals are shown in Fig. 2.7. It is shown that the conduction band of 

the compounds is simple. The bottom of conduction band was located at the point Г(Г1). 

Closest supplementary minima are located at distances ~1 eV. On the other hand, the valence 

band has a complex structure. Concurrent maxima are located at the Brillouin zone (BZ) 

points Г and N. At the point T there is also a supplementary valence band maximum (VBM) 

at distance of several tenths of an eV. In AgGaS2 and AgGaSe2 the top of the valence band 

is located at the point Г(Г4). At the same point at a distance Δcr there exists a double level Г5 

which branches with consideration of spin-orbital interaction. The level at point N practically 

coincides with the top of the valence band in AgGaS2 and is below it by ~0.1 eV in AgGaSe2. 

In AgGaTe2 the top of the valence band is located at point N and the level Г4 lies 0.31 eV 

lower [28]. The authors showed that anion displacement affects the conduction band only 

slightly and has a more significant effect on the valence band.  From the analysis of these 

results it follows that the optical transitions that form the fundamental absorption edge must 

correspond to the band gap of the indirect type. However, from optical studies it follows that 

the band gap of the considered crystals is of the direct type. Therefore, we can say that the 
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methods used in [28] allows only in the first approximation to obtain information about the 

structure of electronic levels, but does not describe electronic states well enough. 

  The first self-consistent calculations of the band-energy structure for CP crystals were 

performed by Bent et. al. [40] for CuInSe2 crystal. The potential-variation mixed-basis 

(PVMB) approach was used for this purpose. This method avoids pseudopotential 

approximations and solves the all-electron problem self-consistantly within the DFT 

approach [19]. 

In [29], similar calculations were performed using the PVMB method for CuAlS2, 

CuGaS2, CuInS2, CuAlSe2, CuGaSe2 and CuInSe2 crystals.  From the calculations it follows 

that the upper valence band has its maximum at the (2)

4Г v
 point in the zone center. Conduction 

band minimum, is at the Г1с point, hence all six materials have a direct band gap in contrast 

to results of [40]. There are two secondary maxima in the upper valence band within 1 eV 

of the valence band maximum (VBM), located at (5)

1vN  and T3v + T4v, with the former being 

always closer to the VBM than the latter. The minimum of the upper valence band always 

occur at or near the (4)

1vN  point, with secondary minima at (1)

4Г v
 and T4v + T5v. At the center 

of the Brillouin zone near the VBM authors has found the crystal-field splitting pair 
(1)

4Г v  

(single degenerated) and (2)

5Г v
 (doubly degenerate). With the use of the sign convention of  

the crystal field (CF) splitting between the them is given by ΔCF = E( (2)

5Г v ) – E( (2)

4Г v ) [1]. It 

represents the effects of the existence of two distinct cations, tetragonal distortion, and anion 

displacement. It was shown by Bent et. al. [40] that six chalcopurite crystals can be divided 

into two groups according to the magnitude of ΔCF. Whereas CuInX2, (X = S, Se) have a 

small tetragonal distortion η = 1.004 – 1.0065 and show a very small ΔCF. The remaining 

four materials have a noticeable tetragonal compression and as a consequence they show  

ΔCF < 0. 

Work  [41] is devoted to the study of the electronic structure of AgAlM2 (M = S, Se, 

Te) chalcopyrite semiconductors using the DFT-based self-consistent tight-binding linear 

muffin tin orbital (TB-LMTO) method. The calculated equilibrium values of the lattice 

constants, anion displacement parameter u, tetragonal distortion η and bond lengths are in 

good agreement with experimental values. It was shown that these semiconductors are the 

direct band gap semiconductors with band gaps 1.98 eV, 1.59 eV and 1.36 eV, respectively. 

These results obtained within LDA limitations are in agreement with the respective 

experimental values of 3.13 eV, 2.55 eV and 2.27 eV [42,43]. Further stady showed that the 
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electronic properties of these semiconductors significantly depend on structural distortion 

and the type of hybridization. A detailed study of the total density of states (DOS) and partial 

density of states (PDOS) shows that p–d hybridization between Ag d-and anion p-orbitals 

drastically reduces the band gap. The reduction is 51 %, 47 %, and 42 %, for M = S, Se and 

Te, respectively. But the band gap increases due to anion displacement, in contrast to the 

result obtained by Jaffe et.al. [44] in the case of CuInSe2. This is due to the relative value of 

the anion displacement parameter u. In the case of AgAlM2, u increases, whereas for CuInSe2 

it decreases with respect to the ideal value u = 0.25 corresponding to the binary ZB structure. 

The bandgap enhancement due to anion distortion is 9.8%, 8.2% and 5.1%, respectively, for 

AgAlM2 (M = S, Se and Te). The total DOSs and PDOSs further showed that there is a 

significant effect on the electronic properties due to structural distortion and the presence of 

p–d hybridization. 

Figure 2.8 shows the band-energy structure of CuAlTe2 and AgAlTe2 crystals 

calculated from first-principles calculations by Huang et. al. [45]. The calculations were 

performed with the DFT as implemented in the Vienna Ab-initio Simulation Package 

(VASP) [46] together with the generalized gradient approximation (GGA) in the form of 

Perdewe-Burkee-Ernzerhof (PBE) [47] as exchange and correlation (XC) functional [45]. 

The study considers the tellurides with a proper band gap (i.e. CuAlTe2 (2.06 eV) and 

AgAlTe2 (2.27 eV)) as the photocathode candidates investigated by first-principles 

calculations.  

It is known that narrowing the band gap of photoelectrode decreases the driving force 

for the redox reactions of water. A compromised width around 2.0 eV is considered as the 

appropriate band gap of photoelectrode forwater splitting [48–50]. The other requirements 

for the photoelectrode are also needed, such as band edge positions that straddle the water 

redox potentials, high carrier mobility to facilitate the electron-hole separation, large surface 

area and sufficient stability under reaction conditions etc. [45]. 

Fig. 2.8 presents the band structure of CuAlTe2 and AgAlTe2 calculated with the GGA-

PBE method. Both of them have direct band gaps at the Г point. The calculated band gaps 

are 1.00 eV for CuAlTe2 and 1.06 eV for AgAlTe2, which are smaller than the experimental 

values 2.06 eV for CuAlTe2 and 2.27 eV for AgAlTe2 [29]. 

Fig. 2.9. presents the DOS of CuAlTe2 and AgAlTe2 crystals. It was shown that 

CuAlTe2 and AgAlTe2 crystals have the same bonding characters [45]. From –6 to –5 eV, 

the electron density consists of a bonding state of Al-s, Te-s, and Te-p. From –4 to –2 eV, 

the electron density involves a bonding state of Cu-d (or Ag-d) and Te-p. The topmost 
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valence band (–2 to 0 eV) is mainly an anti-bonding state of Cu-d (or Ag-d) and Te-p. 

Moreover, the bottommost conduction band has the character that is mainly an anti-bonding 

component of Al-s, Te-s, and Te-p. The VBM is determined by primarily the Cu – Te (or 

Ag – Te) interaction, whereas the CBM is determined by primarily the Al – Te interaction. 

              

a)      b) 

Figure 2.8. The band structures of CuAlTe2 and AgAlTe2 demonstrate that both of them have a 

direct fundamental band gap at the Г-point. 

 

    

 

Figure 2.9. The angular-momentum resolved density of states of CuAlTe2 (a) and AgAlTe2 (b), 

which are scaled by 1/(2l + 1) in order to better visualize the contributions from the different orbitals. 
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As can be seen, the differences on the DOS between CuAlTe2 and AgAlTe2 are that Cu-d 

mainly locates at the topmost valence band whereas Ag-d mainly locates at lower band from 

–4 to –2 eV, which can be explained by the atomic orbital energies and the bonding character. 

The theoretical atomic orbital energies relative to vacuum of Cu-3d, Ag-4d, and Te-5p are –

5.39 eV, –7.73 eV, and –6.20 eV [51], respectively. Owing to the atomic orbital energy of 

Te-5p higher than that of Ag-4d but lower than that of Cu-3d, Ag-4d dominates at the 

bonding state (lower energy part) after the formation of Ag – Te bond while Cu-3d at the 

anti-bonding state (higher energy part) after the formation of Cu – Te bond. Since the 

difference (0.81 eV) on the atomic orbital energy between Cu-3d and Te-5p is much smaller 

than that (1.53 eV) between Ag-4d and Te-5p, Cu – Te bond can have stronger bonding 

interaction than Ag – Te bond, which is verified by that there is a clear bonding/antibonding 

splitting around –2.5 eV in the DOS of CuAlTe2 but not in the DOS of AgAlTe2 [45]. 

From the analysis of the band structure, the authors obtained the values of the effective 

masses of charge carriers for the studied crystals. The electron and hole effective masses of 

AgAlTe2 are very light in [001]-direction. This is beneficial for an efficient carrier 

separation. 

 

Table 2.1. Effective masses of the electrons and holes in CuAlTe2 and AgAlTe2 in units of 

the free electron mass m0. 

 Effective masses CuAlTe2 AgAlTe2 

Electrons 

*

100m , 
*

010m  0.10 0.11 

*

001m  0.10 0.10 

Holes 

*

100m , 
*

010m  0.53 0.65 

*

001m  0.11 0.11 

 

It was also shown by authors that the band edge positions of AgAlTe2 straddle the 

water redox potentials. In combination with the suitable band gap energy and light carrier 

effective masses along [001]-direction, AgAlTe2 has the capacity of being a good candidate 

for water splitting [45]. Additionally it was shown that to increase the absorbing ability on 

visible light, Ga-doping can adjust the band gap of AgAlTe2 to an appropriate value and 

remain the reasonable band edge positions of AgAlTe2, which is suggested as an effective 

approach to optimize its electronic structure for water splitting [45]. Self-consistent 

calculations using a scalar relativistic full-potential linearized augmented plane wave 
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method were carried out using the WIEN2k package [52] for CuAlX2 (X = S, Se, Te) were 

conducted in [53]. The XC is treated within the local density approximation (LDA) and 

scalar relativistic equations are used to obtain self-consistency. The Kohn–Sham equations 

are solved using a basis of linear augmented plane-waves. The potential and charge density 

in the muffin-tin (MT) spheres are expanded in spherical harmonics with lmax = 8 and non-

spherical components up to lmax = 6. 

   

a)      b) 

 

c) 

Figure 2.10. Band structure for the CuAlX2 (X = S, Se, Te) compounds calculated using the WIEN2k 

package with LDA functional. 

 

In all cases, the VBM and the conduction band minimum (CBM) are located at Г 

resulting in a direct energy gap of 2.7, 2.1, and 1.6 eV for CuAlS2, CuAlSe2 and CuAlTe2, 

respectively. In CuAlSe2 and CuAlTe2 crystals a reduction of the bandgap in comparison to 

CuAlS2 is observed. The reduction in the bandgap was attributed to the fact that the CBM 

has strong cation s-states whereas the other states in the conduction band are more strongly 

mixed with other atomic orbitals such as anion p-states. In the conduction bands shifting the 
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Cu s-states has a small effect while shifting Al s-states have a strong effect in increasing the 

bandgap, remaining the valence bands unchanged [53]. Hence, the conduction band shift 

towards Fermi energy (EF) when we move from S to Se to Te. The overall reduction in gap 

is consistent with an overall weakening of the bonds, and, therefore, with a smaller bonding 

anti-bonding splitting [53]. 

A comparison of the experimental and theoretical band gaps is given in Table 2.2. The 

calculated energy gaps are smaller than the experimental gaps as expected from an LDA 

calculation [54]. 

Table 2.2. Lattice parameters and bandgaps for the CuAlX2 (X = S, Se, Te) compounds 

Parameter CuAlS2 CuAlSe2 CuAlTe2 

Exp

gE  (eV) 3.49a,b, 3.50c 2.71a, 2.67d, 2.70c 2.45e, 2.06f 

Theory

gE (eV) 2.05a, 2.44g, 2.7h 1.65a, 1.57h, 2.1h 1.6h 

a Ref. [29]., b Ref. [55]., c Ref. [56]., d Ref. [42]., e Ref. [57]., f Ref. [58]., g Ref. [59]., 

h Ref. [53]. 

In the Fig. 2.11 the DOS and PDOS for CuAlS2, CuAlSe2, and CuAlTe2 crystals are shown 

[53]. For this grorp of materials the conduction band minimum and above has contributions 

from X s/p-, Cu s/p-, and Al s/p-states. The trends in the band structures (as we move from 

S to Se to Te) can be summarized as follows: (1). The second group in CuAlSe2 and CuAlTe2 

is shifted towards higher energies by around 0.5 eV in comparison with CuAlS2, which 

reduces the bandwidth of both CuAlSe2 and CuAlTe2 with respect to CuAlS2. (2). The band 

gap between the two groups of Cu d- and X p-electrons in the top of the valence bands is 

decreased when moving from S to Se to Te. (3). The bandwidth of the conduction band 

increases slightly by around 0.7 eV on going from S to Se to Te causing reduction of the gap 

between the valence and conduction bands. From the PDOS, we note a strong hybridization 

between Cu d- and Xp-states around −4 eV. Following Yamasaki et. al. [59] authors defined 

degree of hybridization by the ratio of Cu d-states and X p-states within the muffin-tin 

sphere. Based on this one can say that the hybridization between Cu d- and X p-states 

becomes weak when moving from S to Se to Te. Also it can be noted that Cu s-states are 

strongly hybridized with Cu p-states at around −13.0 eV, and Al s-states with Al p-states 

around −1.0 and 4.0 eV. The Al p-states are strongly hybridized with Cu s- and Cu p-states 
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at around −13.0 eV and with Cu s-states at around −5.0 eV. Also Al p-states hybridize with 

Al s- and Cu s-states at around −1.0 and 2.5 eV. 

 

 

a)      b) 

 

c)      d) 

 

e)     f) 
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g)      h) 

 

i) 

Figure 2.11. Total density of states (states /eV unit cell), along with Cu s/p/d, X-s/p, and Al s/p 

partial densities of states for: CuAlS2 (form a to c); CuAlSe2 (from d to f); CuAlTe2 (from g to i). 

 

 

Experimental investigation of electronic levels in I-III-VI2 chalcopyrite crystals 

From the literature we know about several works devoted to the experimental study of 

the band-energy structure using X-ray photoelectron spectroscopy (XPS) for crystals I-III-

VI2, which proved to be a powerful method for studying the structure of deep (core) and 

valence states in the material [29,60–63]. Earlier in [64–67] it was shown that experimental 

methods of XPS and X-ray emission spectroscopy (XES) are an extremely informative 

method for studying the structure of electronic levels of the valence band top, and showed 

excellent agreement with theoretical calculations, which confirmed their reliability. 

Kuznetsova et.al. in [61] are performed the investigation of the evolution of the 

valence-band structure at gradually increasing copper content has been analysed by XPS in 
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In2Se3, CuIn5Se8, CuIn3Se5, and CuInSe2 single crystals. The XPS measurements were 

carried out using monochromated Al Kα line: hν = 1486.6 eV. The analysed samples were 

cleaved under high vacuum conditions in preparation chamber and then moved for XPS 

measurements without breaking vacuum. All the XPS spectra were measured under ultrahigh 

vacuum ~2 × 10–10 Torr using PHI 5600ci spectrometer with the total-energy resolution set 

to 0.2 eV. No noticeable charges of the sample surfaces by high-intensity Al Kα beam has 

been observed during the measurements. In order to improve the quality, all the analysed 

XPS spectra have been deconvoluted using a Gaussian line shape with the standard full width 

at half maximum (FWHM) of 0.34 eV. 

 

 

Figure 2.12. Solid lines are experimental XPS spectra of 

the valence band in In2Se3 (a), CuIn5Se8 (b), CuIn3Se5 (c), 

and CuInSe2 (d): dependence of the photoelectron intensity 

I(E) on the binding energy E. Dotted lines are the 

calculated total DOS, presented with a 0.3 eV Lorentzian 

broadening and where the energy scale refers to the 

valence band maximum. 

 

 

 

The experimental XPS spectra of the top of the valence band in In2Se3, CuIn5Se8, 

CuIn3Se5, and CuInSe2 are shown in Fig. 2.12 on a binding energy scale. Calculated total 

DOS, for these compounds, presented with a 0.3 eV Lorentzian broadening, are also shown 

in Fig. 2.12 on the energy scale referring to the valence band maximum.  

The authors found that the gap between the (II) non-bonding band and the (III) bonding 

band well seen in the theoretical DOS of CuInSe2 not always can be found resolved in the 

XPS spectra. This peculiarity was related to the quality of the material and the surface.  

The observed changes in the valence band structure of the four compounds suggest 

that the degree of p-d hybridization is directly determined by the copper content and by 

decreasing the concentration of copper the repulsion of the bonding and non-bonding states 

can be tuned. A comparison of these spectra with calculated total and angular-momentum 

resolved DOS revealed the main trends of this evolution. The formation of the theoretically 
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predicted gap between the bonding and non-bonding states has been observed in both 

experimental XPS spectra and theoretical DOS [61]. 

Another work devoted to the study of XPS spectra of a number of chalcopyrite crystals 

of groups I-III-VI2 and II-IV-V2 is performed by Rife et. al. [60]. Crystals such as ZnGeP2, 

ZnGeAs2, CuGaS2, CuA1S2, CuInSe2, and AgInSe2 are considered here. A Hewlett-Packard 

5950A spectrometer employing monochromatized aluminum Kα radiation was used to 

measure XPS spectra. The resolution was equal to –0.55 eV. Data were taken on samples 

that were cleaved (crushed) immediately prior to insertion into the spectrometer. Because 

only very weak 1s-lines of oxygen and carbon were observed, effects of surface 

contamination are believed to be minimal. 

Rife et. al. [60] performed the investigation of XPS spectra for CuGaS2 crystal in the 

energy range from 6 to –19 eV. The obtained experimental spectrum for this crystal is shown 

in Fig. 2.13. It was found that the overlaying peaks of the XPS spectrum are denoted as V0, 

which are 2 eV below the VBM originate mainly from Cu 3d-atoms. These levels contain 

some admixture of S 3p-states. The lower energy peak, labled by the authors as V4, is 

compared to the s-electrons of the cations, while V5 peak is attributed to the S 3s-states. The 

Ga 3d-electron spin-orbit douplet appears near the –19 eV. The identified XPS features of 

studied in [60] chalcopyrite crystals are collected in Table 2.3.  

 

 

Figure 2.13. XPS data for CuGaS2 with identified critical levels in conduction and valence bands. 

The Ga 3d core levels are roughly –19 eV below the top of the valence band V0 The state V5 is 

attributed to sulfur 3s core states. V4 probably identies s-states centered on the cations and V1 and V2 

are predominately Cu 3d in character. 
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Fig. 2.14 shows the XPS spectra meshuared for CuInSe2 crystals. From the analysis of X-ray 

data and UV photoemission results [68] the authors of [60] conclude that sholder at –0.5 eV 

and overlaying peak at –2.1 eV and XPS spectra of the CuInSe2 crystal originate mostly 

from the Cu 3d-states. Like the CuGaS2 crystal, d-states probably contain substantial p-state 

admixture. At the energy –13 eV and –17.6 eV it is observed the Se 4s- and In 4d-core levels. 

For the In 4d-levels for CuInSe2 the spin-orbital splitting is ~0.80 eV [68]. This value is 

consistent with barely divisible in the spectrum doublet seen in XPS spectra [60].  

 

Table 2.3. Energy location (in eV) of identified XPS and density of states regions relative 

to the indicated top of the valence band. Correlation of labels not necessarily implied 

between specimens for levels C1, C2, C3, C4, V1, V2, and V3. 

Level CuGaS2 CuInSe2 AgInSe2 

C4 6.8 — — 

C3 5.1 3.4 4.5 

C2 3.5 2.9 3.0 

C1 2.5 1.4 1.3 

C0 2.5 1.1 1.3 

V0 0.0 0.0 0.0 

V1 –1.6 –2.1 –1.0 

V2 –2.1 –2.1 –4.3 

V3 –3.4 –3.3 –4.3 

V4 –7.1 –6.3 — 

V5 –13.0 –13.0 –12.4 

Core  

d5/2 –18.8 –17.2 –16.7 

d3/2 –19.3 –18.0 –17.6 
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Figure 2.14. XPS data for CuInSe2 with identified or inferred critical levels in conduction and 

valence bands. The In 4d-core levels are roughly –17.6 eV below the top of the valence band V0. The 

state V5 is attributed to Se 4s-core states. V4 probably identifies s-states centered on the cations and 

states V1, 2 are predominately hybridized Cu 3d-states. 

 

 

Figure 2.15. Experimantal XPS data for AgInSe2 chalcopyrite. The Ag 4d spin-orbit splitting is not 

resolved but the splitting is seen for the In 4d-core states.  

 

Figure 2.15 shows the XPS spectra for the AgInSe2 crystal. The obtained spectra is 

close to the CuInSe2 crystal. The exception is that the d-level of Ag atoms lies deeper in the 

valence band compared to the copper atom. Ag-d levels hybridize less with the p-states of 

Se at the top of the valence band than to the copper d-states in CuInSe2 (17 % vs 34 % from 

electroreflectance measurements [1]). Therefore, AgInSe2 d-states are fletter and the band 

gap shift from the II-VI analog is less than for the case of CuInSe2. XPS spectra showed In-

4s spin-orbit splitting of 0.65 eV is expected in [69] are not resolved [60]. 
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In [60] the authors was not able to obtain XPS spectra of CuAlS2 crystal. The authors 

limited themselves to examining the reflection spectra and analyzing the experimental results 

from [62,63] , which are presented up to 10 eV below the top of the valence band. 

 

 

2.2.2. Optical properties of chalcopyrite crystals of I-III-VI2 group 

 

Isotropic point in the semiconducting crystals 

The phenomenon of birefringence sign inversion (BSI) is realized quite often. 

Isotropic point (IT) is found in a number of binary semiconducting compounds: CdS [70–

74], CdSe [74,75], ZnO [76,77], MgF2 [78], ZnS [79]. In [80–82], a study of the spectral 

position of IT in mixed crystals was performed. The BSI point was also found in a number 

of chalcopyrite semiconductor compounds of the AIBIIIC2
VI and AIIBIVC2

V type [1,83–86]. 

In the Table. 2.4 listed some of these crystals that have a BSI point. The value of 0 is given 

at room temperature, except for the CdSe crystal. 

The spectral position of IP in the crystal depends on the production technology, the 

stoichiometry of the composition, the presence of impurities, external fields, temperature, 

pressure, etc., and therefore may differ from sample to sample. This fact explains the 

differences of the order of 1–5 nm in the definition of 0 of a particular crystal, which are 

found in the literature. For example, in cadmium thiogalate CdGa2S4, which is obtained from 

the gas phase, IP was observed at 0 = 488.2 nm [87–89], while the Bridget-Stockbarger 

method shifts it to a maximum of 0 = 491.6 nm. 

The study of the physics of the phenomena that lead to BSI allows us to predict the 

ways of inducing IP in various crystals. The starting point in the case of analysis of the causes 

that lead to the phenomenon of BSI is the nature of the structural ordering of atoms in the 

lattice of a compound. 

Thus, for example, for a sequence of crystals with the structure of chalcopyrite 

(AgGaS2, CdGa2S4, CdGa2Se4, InPS4), the transition from one crystal to another is 

accompanied by the appearance of an ordered sequence of cationic vacancies, the 

concentration of which increases from two in the cell S4. This allows us to determine the role 

of structural defects in the overall picture of physical interactions that determine the spectral 

behaviour of dispersion curves of crystals. 
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Table 2.4. Semiconducting materials that have the birefringence sign inversion. 

Crystal Wavelength ІP, 0, nm Structural type 

MgF2 

Al2O3 

BaLaGa3O7 

ZnS 

ZnO 

CdGa2S4 

CdGa2S4 

CdSiP2 

AgGaS2 

CdS 

CuAlSe2 

CuGaS2 

CdSe 

CdSiP2 

AgGaSe2 

LiNbO3 

119.4 

142.6 

300 

340 

396 

487.2 

488.2 

514.5 

497.4 

523 

530 

640 

710 (77 К) 

730 

810 

7500 

Rutile 

Corundum 

Chalcopyrite 

Wurtzite 

Wurtzite 

Thiogallate 

Thiogallate 

Chalcopyrite 

Chalcopyrite 

Wurtzite 

Chalcopyrite 

Chalcopyrite 

Wurtzite 

Chalcopyrite 

Chalcopyrite 

Perovskite 

 

The study of the spectral dependence of the birefringence ∆n(λ) of AgGaS2 and 

CdGa2S4 crystals was performed by the interferential method of polarized rays [86,87] on 

oriented plane-parallel plates of different thickness. The obtained dispersion ∆n(λ) is 

characteristic of wide-band anisotropic semiconductors [85]: almost constant value in the 

long-wavelength region and strong dispersion near the fundamental-absorption edge. This 

suggests that the dispersion of ternary compounds with chalcopyrite structure, as in the case 

of binary semiconductors, can be qualitatively described on the basis of the model, which is 

collecting the contribution of near-edge optical transitions and high-energy transitions in the 

depth of its absorption band, where the first contribution determines the dispersion, the 

second - the values of no, ne and ∆n. The sign ∆n in the region of transparency depends on 

the ratio of these contributions, since the first one is almost always negative due to its strong 

dispersion, and the second is always positive in tetragonally compressed crystals [90]. A 

negative sign of ∆n indicates the predominance of the contributions of the near-edge optical 

transitions. In addition, the authors of [90] showed that in the case of approaching the 

fundamental  absorption edge ∆n decreases, in IP it becomes zero and then, changing the 

sign, increases. This fact, as well as the existence of IP, indicates that in AgGaS2 and 

CdGa2S4 crystals, as in all I III VI II IV V

2 2A B C and A B C compounds, the positive dispersion 



Literature review of structure and properties of I-III-VI2 group materials 

50 | Page 

ν

d n

d


 is due to tetragonal compression of the crystal lattice [91,92], which causes the 

characteristic splitting of the valence band. 

Calculation of the energy spectrum of cadmium thiogallate crystals shows that the 

top of the valence band and the bottom of the conduction band are localized at the point Г, 

and the bottom of the conduction band corresponds to the representation Г1, and the top 

valence band – Г3 [93]. Without taking into account the spin-orbit interaction, the top of 

valence band consists of two levels Г3 and Г2 + Г4 splited by the intrinsic crystalline field. 

Analysis of the results of the calculation of the band structure [93–95] and the reflection 

spectra in the region of fundamental absorption [96–98] shows that the minimum band gap 

Eg in CdGa2S4 is determined by direct transitions Г3 → Г1 with an energy of 3.43 eV, which 

are allowed for polarization E || с. Transitions (Г2 + Г4) → Г1 are allowed for polarization E

 c, with energy – 3.67 eV. The value of crystal spiting in AgGaS2 and CdGa2S4 is of the 

same order (∆ ≈ 0.24 eV) and correlates with the degree of tetragonal compression of these 

crystals. This circumstance causes a sharper increase of the refractive index ne compared to 

no in the case of approaching the edge of self-absorption, which leads to the intersection of 

the dispersion curves ne and no and explains the detected dependence ∆n(λ). 

The close values of ne and no in the CdGa2S4 crystal indicate that in this crystal high-

energy interband transitions are allowed for polarizations E || c and E c and occur at almost 

the same energies, which is consistent with the energy position of the features in the 

reflection spectra of CdGa2S4 for both polarizations [95,97,99]. In AgGaS2 crystals, on the 

contrary, the oscillator strength of near-edge transition for polarization E || c are significantly 

dominated by the oscillators strength of the near-edge transitions for E c, which leads to 

an increase in ∆n in the area of transparency of AgGaS2 compared with CdGa2S4. 

The CdSiP2 crystal is the only representative of the II IV V

2A B C  group of compounds 

that is optically negative in the region of transparency and for which the relation 

Еg(E || с) < Еg(E c) (Eg is the band gap width) is fulfilled, and it is also characterized by 

IP at λ0 = 515.6 nm [83]. A similar situation was found for some compounds of the 

II IV V

2A B C  type, for example, CuGaS2. Conversely, a CdS crystal, which is optically positive 

in the long-wavelength region of the spectrum, changes its sign to the opposite during the 

transition through the point λ0 = 523 nm, because the relation Еg(E || с) > Еg(E c) is valid 

for it. 
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Based on this, we conclude [89]: if the birefringence of an arbitrary crystal in the 

region of transparency has a negative (positive) sign, and the structure of energy zones is 

such that Еg(E || с) < Еg(E c) or Еg(E || с) > Еg(E c), it can necessarily be characterized 

by the wavelength λ0 near the absorption edge, for which ∆n = ne – no. 

The authors of [89] also concluded that the origin of IP in semiconductor crystals is 

due to the structure of the energy zones of the crystal and the anisotropy of interband 

transitions, which determine the rapid growth of one of the refractive indices when 

approaching the edge of fundamental absorption and change the birefringence sign. 

Therefore, IP in such crystals is located near the edge of its own absorption from the long-

wavelength part of the spectrum. 

Analysis of the Table. 2.4 shows that IP is observed mainly in crystals with symmetry 

of wurtzite and chalcopyrite. Of particular interest are crystals whose birefringence changes 

its sign in the IR region of the spectrum. Based on them, it is possible to create selective IR 

filters. Among the crystals that have BSI in the IR region of the spectrum can be 

distinguished lithium niobate (λ0 = 7500 nm) [98]. 

 

Nonlinear optical effects in I-III-VI2 crystals 

Nonlinear optical phenomena (NLO) were discovered almost immediately after the 

invention of the laser. In the early 1960s, Peter Franken first observed second-harmonic 

(SHG) optical signals in a SiO2 crystal [100]. Since then, materials with high nonlinear 

optical responses have attracted considerable attention due to their widespread use in laser 

technologies, such as the generation of coherent radiation in the IR range, the design of 

optical parametric oscillators and analytical devices. Such devices are used to detect various 

chemicals, both elements and compounds that have certain vibrational spectra. 

Nonlinear optical application of materials is of great importance today for various 

areas of our lives. The use of nonlinear optical parametric devices carry out ecological 

monitoring of air pollutants in the environment. Another possible use is also the analysis of 

human respiration in medicine [101,102]. Figure 2.16 shows some other possible ways to 

apply the nonlinear optical effects presented in [103]. 

Nonlinear optics includes a range of phenomena that occur during the interaction 

of intense electromagnetic radiation of the optical range of the spectrum with the 

environment. Such high-intensity radiation is generated by lasers. During the interaction of 

intense optical radiation with the medium, the linear dependence of the polarization of the 
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medium with the electric field strength of the electromagnetic wave is lost, which leads to 

the appearance of nonlinear optical effects. 

 

 

Figure 2.16. Scheme for organizing nonlinear optical applications [103]. 

 

When light propagates through linear materials, it excites electrons in the medium, 

which, oscillating with the same frequency as the excitation, again emit light with the same 

optical frequency. But some crystals show a different behavior. They consist of asymmetric 

molecules whose atoms have very different electron densities. When an electron in such a 

medium is excited by an electromagnetic wave, it tends to move mainly in the direction of 

atoms with a higher electron density. His movement is distorted. The electron therefore re-

emits optical frequencies different from its excitation frequency. Thus, these crystals can 

lead to the division of the incident wave into two others with different frequencies. They do 

not simply respond to optical excitation. Therefore, their name is "nonlinear." Thus, when 

they are illuminated, nonlinear materials generate two different waves, which are called 

"daughter waves". Energy conservation is the only limitation for possible frequency 

combinations: all pairs of wavelengths can a priori be generated as long as the energy is 

conserved. In this optical system, the emitted frequencies depend on the choice of a non-

absorbing part of the energy less than the band gap. 

Under the action of an electromagnetic wave with an electric field strength vector Ei 

in the medium, an electric polarization Pi occurs. Since P = ε0χ~ E, its dependence on the 

component of electrical voltage can be expanded in a series: 

(1) (2) (1)

0ε χ χ χ ...           P E E E E E E ,   (2.7) 

linear            non-linear 
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or can be written as  

L NL P P P ,     (2.8) 

where PL is linear polarization and PNL is nonlinear part of polarization. This equation can 

be rewritten using indeces  

0ε χ χ χ ...i ij j ijk j k ijkl j k lP E E E E E E            ,   (2.9) 

where χij, χijk, χijkl are linear, quadratic, and cubic etc. terms of susceptibility (the repeated 

index means the summation). Nonlinear optics studies the susceptibilities of the second and 

higher orders. The phenomena described by the first term (linear term) correspond to the 

propagation of optical waves in a medium with a linear response.  

The efficiency of NLO crystals is mainly determined by its ability to double the 

frequency of laser radiation. Therefore, we consider in more detail SHG in particular in the 

crystals of group I-III-VI2. 

The SHG signal is described by the second order dielectric susceptibility P(2) = 

ε0χ
(2)·E·E , also called the second harmonic generation. Let's rewrite this number in vector 

writing: 

3
(2) (2)

0

, 1

ε χi ijk j k

j k

P E E


  .     (2.10) 

If we calculate, for example, 
(2)

1P , we will have: 

(2) (2) (2) (2) (2)

1 0 111 1 1 112 1 2 113 1 3 121 2 1

(2) (2) (2) (2) (2)

122 2 2 123 2 3 131 3 1 132 3 2 133 3 3

ε (χ χ χ χ

χ χ χ χ χ )

P E E E E E E E E

E E E E E E E E E E

    

   
,  (2.11) 

In the pulsation field located outside the absorption resonance, Kleinman [104] 

demonstrated that the tensor χ(2) is symmetric with respect to the permutations of the three 

indices i, j, and k. Then we get the following relations: 

χijk = χikj = χjik = χiki = χkij = χkji,    (2.12) 

and only 10 components of the tensor remain independent. To simplify the record, it is 

customary to write dil = χijk/2, the elements of which are related by the following 

correspondence jk → l (xx = 1, yy = 2, zz = 3, yz = zy = 4, xz = zx = 5 та yx = yx = 6), which 

gives: 
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0

χ χ χ χ χ χ
ε

χ χ χ χ χ χ
22

χ χ χ χ χ χ
2

2

x x

y y

x xxx xyy xzz xyz xxz xxy

z z

y yxx yyy yzz yyz yxz yxy

y z

z zxx zyy zzz zyz zxz zxy

x z

x y

E E

E E
P

E E
P

E E
P

E E

E E

 
 
   
   

     
        
 
  

,  (2.13) 

which means that the tensor d is written as: 

2

2

11 12 13 14 15 16 2

0 21 22 23 24 25 26

31 32 33 34 35 36

(ω)

(ω)
(2ω)

(ω)
(2ω) ε

2 (ω) (ω)
(2ω)

2 (ω) (ω)

2 (ω) (ω)

x

y

x

z

y

y z

z

x z

x y

E

E
P d d d d d d

E
P d d d d d d

E E
P d d d d d d

E E

E E

 
 
 

   
 

   
   

   
 

        
 
  

,  (2.14) 

Non-zero values of the second-order dielectric susceptibility are observed only for crystals 

without a center of symmetry. 

For the system of symmetry to which the crystals 42I d  ( 12

2dD ) belong, we have 

equality of such nonlinear optical coefficients  

d14 = dxyz = d25 = dyxz;      

d36 = dzxy,     (2.15) 

Then the matrix of nonlinear optical coefficients for crystals with 42I d  symmetry will have 

the following form 

14

14

36

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d

d

d

 
 

 
 
 

.    (2.16) 

The effective value of the nonlinear coefficient for I-III-VI2 crystals deff = 

d36·sinθ·sin2φ and for θ = 90o and φ = 45o, deff = d34. For NLO practical application in 

different experimental equipment, the requirements for the value of the effective NLO 

coefficient differ. In the general case, for practical application in UV and deep UV regions, 

it is sufficient that the deff is equal to d36 for KH2PO4 (KDP, d36 = 0.39 pm/V). For the IR 

region, the effective NLO coefficient must be proportional to or an order of magnitude 

greater than in KTiOPO4 (KTP, deff ~3 pm/V). 

The growth of Eg leads to a decrease in the NLO coefficient, so when searching for 

and developing new NLO materials, the balance between deff and Eg should be assessed 
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[105]. The independent second-order NLO coefficients for the 42I d  group are the only ones 

d14 = d36.  

In Table 2.5 nonlinear optical parameters of several crystals of group I-III-VI2 were 

collected and, for comparison, similar information about other NLO crystals was shown. 

Table 2.5. Some parameters of ternary NLO crystals for IR spectral range [101,106]. 

Crystal 
Transparency 

window, μm 

Eg, 

еV 

Nonlinear 

coefficient, pm/V 

@ μm 

Damage threshold, 

МW сm-2 

AgGaSe2 0.76–18 1.80 d36 = 39.5@10.6 
13 

30 ns@2000 nm 

ZnGeP2 0.74–12 2.00 d36 = 75@9.6 
100 

10 ns@2090 nm 

CdGeAs2 2.3–18 0.54 d36 = 186@10.6 
160 

30 ns@9.55 μm 

HgGa2S4 0.55–13 2.84 d36 = 27.2@10.6 
40 

30 ns@1064 nm 

CdSiP2 0.52–9 
2.20-

2.45 
d36 = 84.5@4.56 

25 

14 ns@1064 nm 

AgGaS2 0.47–13 2.70 d36 = 12.6@10.6 
34 

14 ns@1064 nm 

LiGaS2 0.32–11.6 4.15 
d31 = 5.8 

d24 = 5.1@2.3 

>240 

14 ns@1064 nm 

LiGaSe2 0.37–13.2 3.34 
d31 = 9.9 

d24 = 7.7@2.3 

80 

5.6 ns@1064 nm 

LiInS2 0.34–13.2 3.57 
d31 = 7.25 

d24 = 5.66@2.3 

40 

14 ns@1064 nm 

LiInSe2 0.46–14 2.86 
d31 = 11.78 

d24 = 8.17@2.3 

40 

10 ns@1064 nm 

BaGa4S7 0.35–13.7 3.54 d32 = 5.7@2.3 
>240 

14 ns@1064 nm 

AgInSe2 1.2-18* 1.24 d36 = 55.9@10.6 — 

CuGaS2 — 2.43 d36 =14.5@10.6 — 

CuGaSe2 1-17* 1.68 d36 = 44.2@10.6  — 

CuInS2 — 1.51 d36 = 10.6@10.6 — 

CuAlSe2 0.5-5* 2.50 — — 

Li0.60Ag0.40GaS2
** — 3.40 d36 = 20.61@10.6 

292.4 

14 ns@1064 nm** 

* Ref. [107], **Ref.[108]. 

AgGaS2, AgGaSe2, and ZnGeP2 are the only three NLO crystals commercially 

available NLO materials to date for IR region for second-order harmonic generation (SHG), 

among which AgGaS2 has the highest figure of merit for NLO interactions in the IR region. 

AgGaS2 crystallizes in the tetragonal 42I d  structure, is transparent from 0.53 to 12 μm, 
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[109] with a transparency edge at 550 nm that is made use of in OPOs, difference frequency 

mixing, and in direct infrared (IR) countermeasure systems [109]. AgGaS2 also has a high 

NLO coefficient (d36 = 15.9 pmV@10,64 at 2.53 μm) [110]. However, AgGaS2 possesses a 

seriously low laser-induced damage threshold (LIDT) that originates from its narrow band 

gap (Eg = 2.58 eV) and the photodarkening effect of silver, [111–113] which dramatically 

shortens the device longevity. Previous studies have tried to increase LIDT to replace Ag by 

Li carrying the same positive charge but with no d-electrons, which can effectively eliminate 

the d–d and d–p electronic transitions [101]. Although exhibiting wider Eg = 4.15 eV and 

consequently higher LIDT because of the proportional relationship of LIDT ∝ Eg, [114–116] 

LGS exhibits a much lower SHG because the crystal structure has collapsed into a lower 

Pna21 orthorhombic symmetry, generating a dramatic reduction of the NLO coefficient (d36 

=5.8 pmV@1 μm) [116]. 

Chen et. al. [117] showed the possibility of Ag to Li substitution in a surprisingly wide 

concentration range from 0–0.60 in an AgGaS2 crystal. This replacement led to pushing up 

the bottom of the conduction band and flattening the top of the valence band. The Li 

substitution tunes the Eg from 2.58 (x = 0, AgGaS2) to 3.40 eV (x = 0.60, Li0.60Ag0.40GaS2), 

a record wide value enables Li0.60Ag0.40GaS2 to exhibit 8.6 times stronger LIDT @ 1064 nm 

when AgGaS2 is compared. More significantly, despite the inversely proportional relation, 

dij ∝ 1/Eg, Li0.60Ag0.40GaS2 exhibits a d36 = 20.61 pmV @ 10.64 μm that is 1.1 times higher 

than that of AgGaS2, which is consistent with the SHG intensity observations at both 1064 

and 2100 nm. 

 

 

2.4. Photovoltaic application of chalcopyrite crystals of I-III-VI2 group 

 

2.4.1. Solar cells based on I-III-VI2 materials as absorbing layer 

 

Solar cells made from a wafer of crystalline or polycrystalline silicon are the dominant 

technology in the commercial market today [118]. These solar panels are used in everyday 

life in all parts of our world and provide autonomy of various devices, or are used as a source 

of alternative energy. However, the cost of such batteries is quite high. Thin film solar cells 

[119] are another type of light coversion devices. Thin-film technology has a number of 

advantages, such as low material consumption (in the first generation solar cells, the absorber 

layer thickness is 100-150 microns, while in thin-film batteries it is 1.5-2.5 microns [120]) , 
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which leads to a reduction in production costs, the application of thin-film elements is 

possible on surfaces of any configuration (car surface, glass facades of buildings), the ability 

to effectively perceive scattered solar radiation, a relatively high efficiency (up to 20%), 

relatively long service life (efficiency decreases by 10-15% of the initial efficiency [121]). 

The practical use of materials of group I-III-VI2 has also found its place in 

photovoltaics, where materials of this group is used as an absorbent element, due to its high 

absorption coefficient, which for this group of materials is ~ 105 cm–1  [1]. Such a large value 

of the absorption coefficient allowed the use of materials of this group in a new class of solar 

cells, called thin-film solar cells. These cells use a thin film made of CP material as an 

absorbent layer. This approach proved to be quite advantageous due to the high efficiency 

and significant material savings, which in turn gives economic benefits to the use of batteries 

such as industrial photovoltaic cells. 

The history of CIGS began in the early 1950s when the ternary compound CuInSe2 

was first synthesized and semiconducting properties were identified. Since then, this material 

has been the basis of many studies of thin-film solar cells based on CP materials. Merdes 

et.al. [122] we report externally confirmed total area efficiencies exceeding 12.8% for 

CdS/Cu(In,Ga)S2 based solar cells. These are the highest reported confirmed efficiencies of 

CdS/Cu(In,Ga)S2 based thin film solar cells. The Cu(In,Ga)S2 absorber was prepared from 

sputtered metals subsequently sulfurized using rapid thermal processing in sulfur vapor. An 

In/(Cu,Ga) precursor layer stack was deposited by DC magnetron sputtering on Mocoated 

float glass substrates [122]. Basic structural and electrical properties of the devices are 

presented in Fig. 2.17. 

  

Figure 2.17. (a). SEM image acquired on a cross-section of the solar cell. (b). EBSD pattern quality 

map taken from the same area [122]. 

 

In Fig. 2.18 (a) the EDX elemental distribution maps were acquired using an acceleration 

voltage of 7 kV. The signals of the Si-K, Mo-L, Ga-L, In-L, Cd-L and Zn-L lines are given 
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superposing a SEM image. The layered structure of the CIGS absorber is apparent, where 

the Ga-rich phase remains at the back of the CIGS layer while the In-rich one is located close 

to the CdS/ZnO layers. 

 

Figure 2.18. EDX elemental distribution maps acquired on the cross-section of the sample. (a) 

Elemental distribution profiles of Cu, In, Ga and S extracted from the elemental distribution maps. 

(b) the absorber layer depth, measured at the same area [122]. 

 

However, here interdiffusion has clearly taken place between CuGaS2 and CIS as evidenced 

by the colored patterns [122]. In Fig. 2.18 (b), the EDX elemental distribution profiles 

extracted from the maps in Fig. 2.18 (a) are plotted against the CIGS layer depth. The 

position of the Mo and CdS buffer layer are indicated in the figure. The gallium 

concentration is highest close to the back contact and decreases gradually towards the 

surface. However, gallium is still detected unambiguously in the CIGS adjacent to the CdS 

layer. A gallium content of about 3-4 at.% is detected in the part of the absorber adjacent to 

the CdS layer [122]. 

  

Figure 2.19. (a) Comparison of the experimental external quantum efficiency of the 12.8 % and the 

12.6 % efficient best solar cells. (b) Simulated external quantum efficiencies of the 12.8 % and 

12.6 % efficient solar cells [122]. 
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In Fig. 2.19 (a) are plotted the external quantum efficiencies (EQE) of the 12.6 % and 12.8 % 

efficient cells in addition to the quantum efficiency of a reference solar cell with an 

efficiency of 7.8 %, an open circuit voltage of 657 mV, a short circuit current of 

20.2 mA/cm2 and a fill factor of 59 %. The reference solar cell absorber was prepared using 

the experimental conditions described in this work however the additional high temperature 

step was omitted for comparison. Authors have shived that the reference solar cell has a 

much lower quantum efficiency (not exceeding 80 %) compared to the champion cells. A 

shift is also observed in the blue region of the spectrum for the reference sample [122]. The 

12.8 % efficient solar cell shows a better current collection between 500 and 800 nm 

compared to the 12.6 % efficient solar cell. In Fig. 2.19 (b) are plotted the resulting simulated 

external quantum efficiencies of the 12.8 % and 12.6 % efficient solar cells [122]. 

  

 

2.4.2. Simulation of the PV characteristics of I-III-VI2-based solar cells 

 

A number of scientific works are devoted to the theoretical modeling of solar cells 

based on CP materials [123–127]. In particular, they highlighted the results of the study of 

such chalcopyrite materials as CuIn1–xGaxSe2 (CIGS), AgInTe2, CuIn1–xAlxSe2, (CIAS). The 

purpose of these studies is the theoretical modeling of solar cells and the study of their 

characteristics using different physical models. Such studies are important because they 

allow to theoretically model the profile of the solar cell and calculate their various 

characteristics, including efficiency. Changing the parameters of the studied cells, such as 

the number of layers, the type of material from which they are made and their characteristics, 

the thickness of these layers, etc. make it possible to predict the behavior of the efficiency 

of such devices. This, in turn, allows scientists and technologists to predict the parameters 

of solar cells and identify possible ways to achieve better performance in the experiment. 

Often, modeling is an effective way to predict information about the properties of the solar 

cell and provides economic benefits by reducing the need to make many experimental 

samples and conducting a large number of measurements. 

In [123], a theoretical study of the compound CIGS as a material for solar cells was 

reported. The purpose of this investigation was to enhance the efficiency of the solar cell by 

varying the thickness of each layer and optimizing the anti-reflective coating layer, as well. 

The optimization takes into account the defects in different layers and at interfaces. This 
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work is based on numerical simulation of the solar cell using the program T-CAD, which is 

a module of the program SILVACO [128]. Examined and numerically optimized an anti-

reflective layer carried out using Atlas module together with the effect of the defects on the 

CIGS based solar cell performance also was studied in [123]. A CIGS based solar cell 

structure with new proposed thicknesses of different layers has been proposed. 

The CIGS based solar cell studied in [123] is based on data reported in [129]. The 

following layers in this structure are n-ZnO, i-ZnO, n-CdS, and p-CIGS are the window, 

intrinsic, buffer, and absorbent layers, respectively. Here the CuIn1−xGaxSe2 (x = 0.4) is the 

active layer since it is responsible of light absorption. 

Light reflection at the surface of the solar cell is considered as a loss because it 

weakens its performance. An antireflective coating layer (ARC) is used to reduce the loss of 

solar energy associated with the reflection of light from the surface of the solar panel. The 

reflectance at a quarter wavelength at the device’s surface is given by 

 
2

0 ZnO:Al ARC

2

0 ZnO:Al ARC

n n n
R

n n n

 
  

 

, (2.17) 

where n0, nZnO:Al, and nARC are the refractive indices of the air, ZnO doped with aluminum 

atoms, and ARC layer, respectively [123]. In order to get a zero reflectance, the following 

condition should be satisfyed 

 2

ARC 0 ZnO:Aln n n . (2.18) 

In case, if for the system, n0 = 1 and nZnO:Al = 1.92 at 550 nm, considering the Eq. 2.18 the 

reflectance equals zero when nARC = 1.386. This refractive index value is close to the real 

value of the MgF2 refractive index (1.38) [123,130]. Therefore, the thin layer of MgF2 is 

used for ARC.  

For the computer simulation, the AM 1.5 spectrum was used at incident power density 

of 100 mW/cm2. Fig. 2.20 shows the short-current density (a), open-circuit voltage (b), 

conversion efficiency (c), and fill factor (d) as a function of MgF2 ARC layer thickness with 

and without defects. JSC increases from 31.56 to 33.98 mA/cm2 (∆JSC = 2.42 mA/cm2 

equivalent to 7.67 %) for device with defects when using 0.11 µm MgF2 layer thickness. In 

the case of device without defects, the shortcurrent density increases from 34.15 to 

36.7 mA/cm2 (∆JSC = 2.55 mA/cm2 which means 7.47 %). For device with defects, the 

efficiency increases from 19.09 without ARC to 20.61 % with the use of 0.11 μm MgF2 layer 

(augmentation of 7.96 %) as depicted in Fig. 2.20 c. For device without defects, the 
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efficiency increases from 21.64 (without ARC) to 23.33 % with the use of 0.11 μm MgF2 

layer (augmentation of 7.81 %). The effect of ARC layer on both VOC and FF is negligible 

as illustrated in Fig. 2.20 b and d, respectively. The increment in JSC and η is caused by the 

suppression of reflected light at the cell surface via MgF2 layer which allowed allowed more 

carriers to be photogenerated. Figure 2.20 indicates that the results are too optimistic when 

the defects are not taken into account. JSC decreases by about 7.5 % and η decreases by about 

11.7 % when defects are introduced.  

 

 

Figure 2.20. Short-current density (a), open-circuit voltage (b), conversion efficiency (c), and fill 

factor (d) as a function of MgF2 ARC layer thickness with and without defects. 

 

The curves of current density as a function of anode voltage for devices with and 

without defects for devices (containing MgF2 layer as ARC) with defects and experimental, 

taken from [123,129] are nearly identical (see Fig. 2.21). Also, it was shown that the quantum 

efficiency of device with defect and that of experimental are close to each other [123]. Study 

of the impact of defect of donor density change from 1014 to 1015 cm–3 showed that both JSC 

and VOC decrease with the increasing of defect density. JSC drops from 33.98 to 32.75 
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mA/cm2 (a decrease of 03.62 %) for a defect density from 1014 to 1015 cm–3, respectively. 

From its side, VOC tumbles from 0.743 to 0.704 V (a diminution of about 5.25 %). The fill 

factor undergoes a diminution of 13.25 % (from 20.61 to 17.88 %) and 5.1 % (from 81.68 

to 77.53 %), respectively. 

 

Figure 2.21. Current density J vs anode voltage for CIGS based solar cell. 

 

It was found that by increasing the thickness of each of the window or buffer layers, 

the conversion efficiency underwent a remarkable decrease. Increasing the absorbent layer 

thickness enhances the conversion efficiency considerably. Structure with the best 

performance has a 0.11 μm ARC MgF2 thickness, 1014 cm–3 donor defects density in CIGS, 

and ZnO:Al, i-ZnO, CdS, and CIGS thicknesses of 0.25, 0.06, 0.03, and 1.6 μm, respectively, 

which gives a 20.64 % conversion efficiency. 

The authors of [126] also performed a simulation of a solar cell based on the absorbing 

layer formed by CIGS material using AFORS-HET software. In this work, the buffer layer 

formed by the thin film of CdS is replaced by ZnS because this material is not toxic compared 

to CdS. The structure of such a cell consists of the following layers: n-ZnO: Al / i-ZnO / n-

ZnS / p-CIGS / Mo. Thus, a polycrystalline thin-film solar cell was modeled where the key 

parts are p-CIGS absorber layer and n-ZnS buffer layer. The characteristics of these key 

parts: thickness and Ga-content of the absorber layer, thickness of the buffer layer and 

doping concentrations of absorber and buffer layers have been investigated to optimize the 

conversion efficiency. It is shown, a maximum conversion efficiency of 26 % with a short-

circuit current of 36.9 mA/cm2, an open circuit voltage of 824 mV, and a fill factor of 85.5 %. 
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In [124], the material Cu(In, Al)S2 (CIAS) was theoretically investigated using the 

program SCAPS-1D (a Solar Cell Capacitance Simulator) [131], the solar cell was modeled 

and its characteristics were studied. The thin-film solar cell model based on the CIAS 

compound used in this work consisted of the following layers: CIAS – 3000 nm; CdS – 

60 nm; ZnO 80 nm; ZnO: Al – 500 nm. In this work, the parameters given in [124] were 

used for calculations. 

 

 

a)      b) 

Figure 2.22. Variation in solar cell parameters influenced by carrier concentration of absorber layer 

(a), and I-V curve of the CIAS solar cell as a function of carrier concentration (b).  

 

The authors show a significant effect of changes in the concentration of charge carriers 

from 1×1016 to 1×1019 cm–3 on all parameters of the solar cell. Fig. 2.22 shows the change 

in open circuit voltage, short circuit current and in efficiency of the CIAS solar cell. Plot of 

open circuit voltage varies nearly linearly with the change in the carrier concentration. As 

concentration increases the Voc improves and reaches maximum at about 0.5 V. Variation of 

short circuit current and efficiency varies non-linearly with carrier concentration. Above 

1018 cm–3 concentration both Isc and efficiency doesn’t changes much. Both these values 

improve with increasing in the concentration values. Maximum Isc and the efficiency were 

observed at 1016 cm–3 carrier concentration, i.e. 27.5 mA and 10.1 % respectively. The I-V 

curves of the CIAS solar cell by varying the carrier concentration is shown in Fig. 2.22 b. 

The obtained results show the conversion efficiency is significant depends on the 

variation of carriers concentration. By utilizing the absorbing photon as much as possible 

i.e. without the considering internal defect of the material the highest efficiency was 
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achieved is 10.1 %, which can be further improved by setting up perfect band edge and 

certain operating condition of the device.  

N. Benseddik et al. [125] reported the numerical study of AgInTe2 solar cells using 

SCAPS-1D program. AgInTe2 is a new promising material for the manufacture of solar cells. 

The general view of the schematic structure of the solar battery based on AgInTe2/CdTe is 

shown in Fig. 2.23. It consists of ohmic contacts and two layers: n-type CdTe, and p-type 

AgInTe2. The authors [125]  investigated the change in thickness and doping of buffer and 

absorber layers, while keeping the other parameters unchanged to check the effect of 

thickness on the performance of the AgInTe2 solar cells. 

 

 

Figure 2.23. Schematic structure of an AgInTe2/CdTe solar cell. 

 

The thickness of the absorbing layer varied from 0.5 μm to 5 μm. The changings of PV 

parameters with the thickness of absorber layer is shown in Figure 2.24 a. The efficiency 

increases as during the increasing of the absorption layer thickness, due to the increased 

exciton generation has been shown [125]. When the absorber layer thickness increases, the 

longer wavelength of illumination will produce a good amount of electron–hole pair 

generation. By reducing the absorber layer thickness, the depletion layer becomes very close 

to the back contact and more electrons will be captured by the back contact for 

recombination. The optimized thickness of the absorber layer is obtained to be equal to 5 μm. 

At this thickness the maximum power conversion efficiency is 18.67 % and Jsc = 

69.43 mA/cm2, Voc = 0.428 V, FF = 61.33 % [125].  

Like the absorbing layer, for the buffer layer formed by the CdTe compound, a change 

in the layer thickness also leads to significant changes in the PV parameters. Figure 2.24 b 

shows the effect of the buffer layer thickness from 0.1 to 0.5 μm on the main photovoltaic 

parameters Voc, Jsc, FF and η of AgInTe2/CdTe solar cell [125]. The increase of the thickness 

of the CdTe buffer layer leads to decrease PV parameters. The decreasing of buffer layer 

thicknesses produces more photogenerated minority carriers easily reach the depletion 



Literature review of structure and properties of I-III-VI2 group materials 

65 | Page 

region and can therefore contribute to the total photocurrent. As a consequence, the optimal 

thickness of the buffer layer is equal to 0.1 μm. 

  

a)      b) 

Figure 2.24. Effect of various thickness of AgInTe2 absorber layer (a) and of CdTe buffer layer (b). 

 

Figure 2.25 exhibits the effect of different doping concentration of AgInTe2 absorber 

layer on the main PV parameters Voc, JSC, FF and η of AgInTe2 /CdTe solar cell. The doping 

concentration of the AgInTe2 layer varies from 5 × 1016 to 1018 cm−3. Other parameters are 

kept constant such as AgInTe2 thickness to 5 μm, CdTe thickness to 0.1 μm and doping 

concentration of CdTe layer to ND = 1017 cm−3. The Efficiency η, the VOC and the FF are 

increased significantly with the increase of the acceptor concentration NA from 5 × 1016 cm−3 

to a tolerable limit of 1 × 1018 cm−3. But the short-circuit current density JSC first increases 

and then decreases with the increase of doping concentration. This degradation is due to the 

increase of the free carrier charge recombination which takes place within the bulk. The 

efficiency reaches its maximum value of 25.01 %. Thus, an optimum performance of 

AgInTe2 thin-film solar cells can be obtained for an acceptor concentration of about  

1 × 1018 cm−3. 

The doping concentration of the CdTe layer varies from 5 × 1015 to 1017 cm−3. With 

an increase in the donor concentration of the buffer layer, there is increase in open-circuit 

voltage (Voc), efficiency (η) and fill factor (FF). After reaching the 2 × 1016 cm−3 value of 

donor carrier concentration, JSC decreases. If we further increase the concentration, Voc is set 
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to be same. The reason behind that is by an increase of donor concentration the mobility of 

the carriers decreases. To give an efficient output from a solar cell the optimum value of 

CdTe buffer layer carrier concentration taken was 1 × 1017cm−3. 

  
a)      b) 

Figure 2.25. Effect of various doping of AgInTe2 absorber layer (a), and of CdTe buffer layer (b). 

 

In [127] the intermediate layer from MoSe2 between the back contact and the CIGS absorber 

was added. It was predicted that an overall efficiency of 24 % can be achieved by reducing 

the back surface recombination and Schottky barrier with sub-micrometer a thick CIGS 

absorber. 

Using of the ordered vacancy compound (OVC) at buffer/absorber interface in CIGS 

solar cell structure have been investigated using ADEPT 2.1 simulator. [132] Besides, 

CuIn3Se5 has been used as an OVC layer that assists to improve the conversion efficiency to 

an optimized level of over 25 % by reducing the recombination rate. Moreover, the 

optimized short circuit current (Jsc) and corresponding open-circuit voltage (Voc) yield a 

higher fill factor (FF) of 86.22 %, which, therefore, results in an optimum efficiency of the 

CIGS cell estimated as 25.68 % under AM 1.5 irradiance. 
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2.5. Conclusions 

 

1. A literature review of the structure and some physical properties of crystals of I-

III-VI2 group with the chalcopyrite structure was carried out. It is shown that the crystals of 

group I-III-VI2 belong to the tetragonal symmetry 42I d ( 12

2dD ) (space group # 122) and have 

four formula units (Z = 4). The crystal lattice is derived from a binary compound with a zinc 

blende structure. It is shown that there are two types of crystal lattice deformation in these 

crystals. The first type of deformation is tetragonal deformation η = c/2a and the second is 

the displacement of the anion atom described by the parameter u. 

2. The scheme of formation of valence bonds for crystals of I-III-VI2 group is 

considered. It is shown that the deformations of the crystal lattice are due to the fact that the 

anion atom has a different environment formed by atoms of two species. These are atoms of 

group I and atoms of group III respectively. The result is inequality of bond lengths I – VI 

and III – VI. 

3. The electronic structure of crystals with chalcopyrite structure was studied both 

experimentally and modeled by theoretical methods. The electronic structure of crystals of 

I-III-VI2 group is similar to that of binary analogue with zinc blende structure. It is shown 

that the electronic structure is significantly affected by the inequality of the length of cation-

anionic bonds.  

4. A review of the literature showed that crystals with the structure of chalcopyrite 

have interesting optical properties that have important applications. Nonlinear optical 

coefficients, which are of great importance, determine the commercial use of these materials 

and the IR region. The presence of an isotropic point and a large value of the absorption 

coefficient together with appropriate band gap value showed the prospect of using these 

crystals as optical filters, absorbing layers in photovoltaics and other devices elements on 

practice. 
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3. METHOD OF THE ELECTRONIC STRUCTURE CALCULATION 

 
 

 

Computer modelling plays an important role in the development of modern science. 

Today, theoretical studies of processes and phenomena allow to supplement and explain the 

phenomena and processes occurring in systems of varying complexity. Often the obtained 

simulation results describe the properties of the real objects quite accurately, which allows 

to replace the conduct of experimental research with computer simulation. Particularly 

attractive is the proposal to move from experiment to modelling in cases where the 

performing of experimental research requires expensive and complex equipment, or when 

the experiment cannot be created in the laboratory. 

 

3.1. General concept of quantum mechanics. Wave function 

 

In classical physics, based on Newton's equations, we are dealing with large particles, 

and object. However, moving to much smaller particles, such as an electron, results in 

quantum effects that are not described by classical physics. There are special quantum laws. 

To consider quantum effects, it is necessary to use its own mathematical apparatus, which 

puts operators in line with physical quantities. In quantum mechanics, any object (atoms, 

elementary particles or state, etc.) is described by a wave function. The wave function is a 

mathematical tool for describing the quantum state [133]. The wave function is a function 

of coordinate, momentum, or spin and time and is denoted as  . The wave function has no 

physical meaning, but the square of the modulus of the wave function contains the amplitude 

of the probability of finding an electron in the certain state. 

For using of the function as a wave function there are certain conditions that must be 

satisfied by the function to be applied as a wave function. These include: 

 The wave function   must be single valued.  

 The wave function   must be “smooth” – continuous everywhere (all its 

partial derivatives must also be continuous). 

 The probability of finding the particle at moment of time t in an interval ∆x 

must be in the interval [0, 1]. 



Method of calculation of the electronic structure 

69 | Page 

 The wave function   must be quadratically integrable. This means that the 

integral * d   must exist. 

 The wave functions must form an orthonormal set (the wave functions must 

be normalized and orthogonal). 

 The wave function must satisfy the boundary conditions of the quantum 

mechanical system it represents. 

The physical meaning of the wave function has its squared modulus 
2| ( , ) |x t   that 

is the probability density. The expression * dx   means the probability of finding the i-th 

particle at time t in the coordinate range [xi, xi + dx]. 

 

3.2. Description of electronic levels in solids 

 

In solid state physics, various theoretical models are used to study the electronic 

properties of materials, which provide information on the structure of electronic levels and 

related physical properties. All these methods are reduced to different ways of solving of a 

main equation of quantum mechanics – the Schrödinger equation (or wave equation). For a 

system consisting of N interacting particles with potential energy U and mass mk in the 

Cartesian coordinate system, the Schrödinger wave equation will look like this: 

2
2

2
U i

m t

  
     

 
,    (3.1) 

where ({ }, )x t  is a wave function which describes the particle, and it is a function of the 

coordinates of the particles x and time t. If there is no dependence on time (the evolution of 

a system does not under the consideration (the energy has some defined values)), then this 

equation is called stationary 

2
2

2
U E

m

 
      
 

.     (3.2) 

Solving the stationary Schrödinger equation, can be found the eigenvalues E and the 

corresponding solutions are eigenfunctions. Discrete values of energy E corresponds to the 

energy position of the corresponding energy levels. 

Equation (3.2) can be represented in a compact operator form: 

Ĥ E   ,       (3.3) 

where Ĥ  is the operator of Hamiltonian for system of the particles: 
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H T U  .      (3.4) 

where T is the operator of kinetic energy of a particle, and U is the potential energy operator 

of a particle. Thus, the solution of the Schrödinger equation is reduced to the problem of 

eigenvalues and eigenfunctions of the total energy operator of the system H. This problem 

can be solved analytically for a hydrogen atom, while for more complex systems (e.g. 2H 
 

ion molecule) an exact analytical solution of the Schrödinger equation is impossible. 

Therefore, the solution of this equation is sought with the help of numerical methods and 

with the use of various approximations that simplify this problem. 

In general, these methods are divided into ab initio and semi-empirical. Semi-

empirical methods greatly simplify the problem described above by using in the model a 

parameters, necessary for the calculations, obtained from the experiment. Ab initio methods 

are based solely on physical laws and allow to calculate the properties of the material without 

the use of any experimental data. These methods use a minimum number of assumptions and 

simplifications. Despite some differences in these two classes of methods, they are not 

fundamentally different. The most popular today are the basic methods based on the theory 

of density functional, the main provisions of which are given in the next section. 

 

3.3. Fundamentals of density functional theory (DFT) 

 

After the development of Hartree-Fock theory [134] the most effective and popular 

method for calculation the quantum systems are the method based on the theory of density 

functional [19,134]. It was an important step towards solving the problem of finding the 

solutions of the wave equation. This approach reduced the problem of solving a 3N-

dimensional equation (for example, the description of 10 electrons requires 30 parameters) 

to N separate three-dimensional equations for a system consist of the large number of 

particles. This assumption allowed using of the electron density n(r) instead of the complex 

N-particle wave functions 1 2 3( , , ..., , )N t r r r r , where 2( ) | ( ) |n  r r . This significantly 

reduces the computational costs for the practical application of the method to molecules, 

solids and materials with a large number of atoms [134]. 

Density functional theory was proposed by Kohn and Hohenberg in 1964. The 

birthday of the DFT coincide with the publication of the manuscript by Pierre Hohenberg 

and Walter Kohn in 1964 entitled “Inhomogeneous electron gas” [18] in the Physical 

Review Journal. For this theory in 1998, the Nobel Prize was awarded to the Walter Kohn 
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and Lu Jen Sham. DFT is the basis for a variety of numerical methods for ab initio modelling 

of the electronic structure and properties of molecular systems and condensed phases. DFT-

based calculations have attracted a lot of attention in the field of condensed matter physics 

in recent decades and have become one of the most commonly used theoretical tools in this 

field. 

Despite the fact that DFT is based on the classical Thomas-Fermi model [134], its 

theoretical substantiation was developed with the formulation of two Hohenberg-Kon 

theorems [18]. 

Theorem I (uniqueness): The ground state density n(r) of bonded system of 

interacting electrons in some external potential Vext(r) determines this potential uniquely to 

within a trivial additive constant. 

From the first theorem we have that the external potential Vext, which by definition is 

a measure of the interaction between electrons and nuclei, can be represented not by a wave 

function describing the orbitals in the approximation of independent electrons, but by the 

electron density n(r). This confirms that the external potential and, as a consequence, the 

Hamiltonian operator of the ground state of electrons can be unambiguously determined only 

by the electron density. 

The number of electrons N interaction with nucleus is determined by integration of 

electron density n(r) 

3( )n dr N r .     (3.5) 

Since, the n(r) determines the number of electrons in the system it also determines 

the ground state wave functions and all other electronic properties. This means that, in the 

ground state, if the electron density is known it is defines external potential, Hamiltonian, 

wave function, and all ground-state properties of the system in turn. In particular it is possible 

to calculate the ground state energy E0[n0].  

ˆ [ ]E H E n    .    (3.6) 

Corollary 1. All properties of the system are completely determined by the ground 

state electron density n0(r). 

Since the internal energy is a system independent and does not depend on the external 

potential, a density-dependent internal energy should be there as a universal functional 
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F[n(r)] although its explicit formula is unknown. Note, that the mathematical form of F[n(r)] 

should be the same for all systems while the external potential varies from one system to 

another depending on the kind of nuclei. 

[ ] [ ] ( ) extE n F n n V dr   r .    (3.7) 

Then, different Hamiltonians differ only by their external potential, and, if there were two 

different external potentials that yield the same ground-state electron density, it leads to an 

apparent contradiction [134]. 

From the first Hohenberg-Kohn theorem follows  

[ ] | | | | | | [ ] ( ) extE n H T U V F n n V dr             r , (3.8)  

where T is the kinetic energy of electron, U is the potential energy due to interaction between 

them, V is the potential energy from the external potential, and F[n] is a universal functional 

for any electron system. The E[n] reached the minimal value (corresponding the total energy 

of ground state) at the ground state density n0(r) that corresponds to Vext. 

Theorem II (variational principle): the density n(r) that minimizes the total energy 

functional E[n(r)] is the exact ground state density n0(r) (E[n(r)] > E0[(r)]).  

This theorem does not give us the exact form of the energy functional E[n(r)]. It 

identified a way to find the minimum energy of a system and proved that the ground state of 

a system could be searched by using the variational principle. At a given Vext, the 

minimization of the system energy to the lowest value by the variation of the electron density 

lead to finding the minimal energy of the system. The electron density n(r) that minimizes 

the system energy is the truly ground-state electron density n0(r).  It states, that ground-state 

wave function Ψ0(r1, ..., rn) is the wave function, that minimizes the energy functional 

[ ]
H

E
 

 
 

,     (3.9) 

where 

*H H d     r ,     (3.10) 

if the ground state is nondegenerate, this means, that for each wave function Ψ ≠ Ψ0 the 

following equation holds: 

0 0[ ] [ ]E E E    .     (3.11) 
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Starting from the variational principle, it is possible to gaint insights about this energy 

functional 
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where F[n] =  min | |e ee
n

T V


 


  is a universal functional of the density, but it is not known 

explicitly. 

 

 

3.4. Kohn-Sham equation 

 

Kohn and Sham in 1965 reformulated the problem of solving of the Schrödinger wave 

equation and allowed the density functional theory to be used in practice. The main idea of 

this approach was to reintroduce a special type of wave functions (a single particle orbitals) 

into the formalism, to treat the kinetic and interaction energy terms. In contrast to the 

Hartree-Fock approach [134], where all electrons interact with each other through a 

Coulomb interaction, the Kohn and Sham approach considers a system consisting of 

quasiparticles that do not interact with each other. However, these particles interact with an 

external effective potential Veff that causes them to behave as if they are charged and have 

the same electron density n(r). That is, the system of interacting electrons where each is 

considered as a system of non-interacting electrons having the same ground state charge 

density n(r). For a system of noninteracting electrons, the charge density of the ground state 

can be represented as the sum of one-electron orbitals Ψi(r) which are called Kohn-Sham 

orbitals (KS): 

2
( ) 2 | ( ) |i

i

n  r r ,    (3.13) 

where і runs from 1 to N/2. 

Effective local potential includes external potential and electronic interaction taking 

into account exchange and correlation energies. Then, the energy of system can be written 

as: 

EKS[n(r)] = Ts[n(r)] + VH[n(r)] + Vext[n(r)] + VXC[n(r)],  (3.14) 
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where Ts is the kinetic energy of the electron interaction, where subscript “s” denotes “single 

particle”, VH is the contribution described by the classical electrostatic interaction or Hartree 

energy, Vext the external potential which is formed by ions and other fields (e.g. electric, 

magnetic), and VXC is a term that describes a special type of interaction of quantum particles 

and includes the effects of electron exchange and correlation. The first two terms are the 

same for any system. Vext depends on the specific system under consideration and for 

different configurations the arrangement of atoms will have its own form. The most difficult 

task is to describe the exchange-correlation interaction of electrons. Usually this type of 

interaction is divided into two components EXC = EX + EC, where EX is the exchange energy 

due to the Pauli principle (antisymmetry) and EC is due to correlations. A many different 

approaches for description of the XC interaction will be discussed in section 3.6. 

In order to minimize the energy of the system Eq. 3.14 (i.e. find the energy of the 

ground state of the particle system) relative to the density and applying the variational 

principle δE[n(r)] = 0, we can write a one-particle Schrödinger equation as 

XC

XC

δ [ ] δ [ ]δ [ ]δ [ ] δ [ ]
0

δ ( ) δ ( ) δ ( ) δ ( ) δ ( )

δ [ ]
( ) ( ) ( )

δ ( )

s H

s
H

T n E nU nE n V n

n n n n n

T n
v v v

n

     

   

r r r r r

r r r
r

,  (3.15) 

if consider the system of non-interacting particles moving in the arbitrary potential vs for this 

system minimization condition is 

s

δ [ ] δ [ ] δ [ ] δ [ ]
0 ( )

δ ( ) δ ( ) δ ( ) δ ( )

s s s sE n T n V n T n
v

n n n n
     r

r r r r
.  (3.16) 

The density that solves the Euler equation is ns(r). Compared to Eq. 3.15 it is seen that if we 

take that 

s H XC( ) ( ) ( ) ( )v v v v  r r r r ,    (3.17) 

the density of the interacting multielectron system in the potential v(r) described by the 

multiparticle Schrödinger wave equation can be calculated by solving simply the equation 

of noninteracting single-particle systems in the potential vs(r). In case of double population 

of all states, the Kohn-Sham orbital is the solution of the Schrodinger wave equation 

2
2 ( ) ( ) ( )

2
s i i iv

m
  

 
    
 

r r r ,   (3.18) 
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here, the i  is the orbitals, called Kohn-Sham orbitals, reproduce the density n(r) of the 

original system. The electron density in this case is estimated using the following equation: 

2
( ) ( ) ( )

N

s i i

i

n n f  r r r ,    (3.19) 

where fi is the occupation of ith orbital, i  is the і-th orbital. This Eq. 3.18 is named after 

Kohn and Sham and is called a Kohn-Sham equation. Here the wave functions obeying the 

orthonormality constraints 

*( ) ( )
i i ijdr    r r ,     (3.20) 

where δij is Kronecker’s delta. Thus, we can write the Kohn-Shaam equation as follows. The 

wave function minimizes the Kohn-Sham functional energy in Eq. 3.18 satisfy the following 

eigen value equations, 

ˆ
KS i i iH    .      (3.21) 

Here HKS is the Kohn-Sham’s Hamiltonian  

2
2ˆ ( ) ( ) ( )

2
KS ion H XCH V V V

m
     r r r ,   (3.22) 

where VH (r) is the Hartree potential 

3( ')
( ) '

| ' |
H

n
V d r

r r



r

r ,    (3.23) 

and VXC is the exchange-correlation potential 

δ [ ]
( )

δ ( )

XC
XC

E n
V

n
r

r
.     (3.24) 

 

 

3.5. Self-consistent procedure of the Kohn-Sham equation solution 

 

Equation (3.18) can be solved self-consistently according to the algorithm proposed 

by Kohn and Sham [19,134]. The general view of the procedure for solving the Kohn-Schem 

equation is illustrated in Fig. 3.1. The self-consistent algorithm can be described as follows. 

At the first step, the starting (initial) electron density n(r) is set and vKS is built with it. At 

the second step, substitution the density into the Hamiltonian and solve in the Eq. (3.18), and 

then solving the differential equation for i  is performed. Solving the equation gives new 

one-electron functions i , from which in the third step a new electron density is revelled. 
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Figure 3.1. Schematic representation of the self-consistent loop used in DFT calculations 

for Kohn-Sham equations solution. 

 

At the fourth step, it is checked whether the electron density does not differ from the initial 

one (|ni+1(r) – ni(r)| < ε, where ε is the criterion of convergence of the self-consistancy 

process), whether the electron density corresponds to the ground state. In case where the 

cycle criterion is not met, the obtained electron density is substituted in the second step of 

the algorythm and the process is repeated until the desired convergence is achieved. If there 

is a ground state of the electronic system, it is easy to calculate the forces acting on ions, 

electronic structure, optical, thermodynamic and other properties of the system. 

 

 

3.6. Exchange-correlation functionals 

 

As was mentioned in paragraph 3.4, the main problem to perform a precise 

calculation of electronic structure and physical properties is related with the description of 

the quantum interaction of electrons named as exchange and correlation interaction. This 

type of interaction has a quantum nature and exact analytical expression is unknown. The 

XC interaction consist of two exchange and correlation parts. The exchange part corresponds 

the exchange interaction of electrons. This is the special, appropriate only for quantum 
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systems contribution to the total energy of many particles system, related with the identity 

(indistinguishability) of the electrons that occurs between the identical particles. For 

fermions this interaction is called Pauli’s repulsion and is related with the Pauli principles 

[135]. The correlation part of XC term describes the interaction in the electronic systems 

and is the measure of how much the movement of one electron influence on the all other 

present electrons. In this case there is the correlated movement between the electrons with 

antiparallel spin occurring through their mutual Coulomb repulsion. The exact XC functional 

is still unknown and for its description an approximations are used.  

For the estimation of the unknown XC interaction there is a lot of different 

approximations and parametrizations developed by scientists. The general goal of those 

authors was to propose the functional that describes the system as close to the real system as 

possible giving the results of calculation in excellent agreement with the experiment. Those 

approximations of XC term is classified on different groups. The general scheme of XC 

classification and evolution is depicted in Fig. 3.2. Few often used functionals are considered 

in this paragraph.  
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Figure 3.2. The general classification of the XC functional used in DFT. 

 

The one of the simplest, important, and commonly used approach of EXC[n(r)] is the 

local density approximation (LDA) [136]. The XC energy value is taken of the electron in 

the position r in the many interacting electrons system with constant density, which is the 

same as XC energy per electron in the uniform electron gas with the same density as in the 

system at position r. In the framework of this approximation the heterogeneous electron 
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density is treated as locally homogenous (is an analogue of the electron gas) with XC energy 

density εXC[n(r)] which is given by the expression 

hom[ ( )] ( ( )) ( )LDA

XC XCE n n n dr r r r ,   (3.25) 

where XC  is the exchange-correlation energy of homogeneous electron gas with the charge 

density n(r). The charge density is determined by the parametrization of modelling of 

electron gas by quantum Monte Carlo method. In this approximation the XC energy is 

considered to be dependent only on electron density in a point r. Despite the fact that this 

approximation is quite simple, and the electron gas in a solid is very far from homogeneous, 

however, the lengths of the bonds in the crystal and molecules are calculated with an 

accuracy of ~ 1%. To the disadvantages of this method the underestimation of the bond 

length, cohesion energy, and band gap width can be attributed. 

The logical continuation of equation (3.25) and other simplest approach was the 

appearance of a generalized gradient approximation (GGA). A correction related to the 

inhomogeneity of the electron density is introduced to the functional (3.26). The gradient of 

electron density ( )n r  was taken into account and is taken as the characteristics of 

inhomogeneity. In the GGA functional the information about charge density gradient n(r) is 

used for the construction of the more precise functionals [137]. 

hom[ ( )] ( ( ), ( ) ) ( )GGA

xc XCE n n n n dr r r r r .  (3.26) 

In such a way the GGA functional include not only the electron density at point r (is local 

as LDA) but take into account the behaviour of this density in a point. This transition from 

LDA to GGA has led to a significant increase in the accuracy of calculations and often fix 

the majority of LDA’s disadvantages. 

Often for the calculations the different class of functionals, called as a hybrid 

functionals, are used [138]. One of the popular hybrid functional is the Becke, 3-parameter, 

Lee–Yang–Parr (B3LYP) that can be presented as follows [139], [140]: 

3

0[ ( )] ( ) ( )B LYP LDA HF LDA GGA LDA

XC X X X X X XE n E a E E a E E     r   (3.27) 

( )LDA GGA LDA

C C C CE a E E   , 
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where a0 = 0.2, aX = 0.72 and aC = 0.81, GGA

XE and GGA

CE  is a generalized gradient 

approximation: Becke 88 exchange functional [141] and correlation functional of Lee, Yang 

and Parr [138] for B3LYP, LDA

XE , LDA

CE  is a local density approximation Vosko-Wilk-Nusair 

(VWN) for correlation description [142]. The hybrid functionals often fix the problem of 

band gap underestimation but requires the much more computational costs (see Fig. 3.2) 

leading to the limitation of using this functional for systems with large number of electrons.  

In order to improve the calculation and fix the band gap problem the different 

corrections are used to obtained agreement between the experiment and calculations. The 

detailed description of other functionals like mBJ, sX, HSE and others do not discussed in 

this chapter and can be found in the literature. 

 

 

3.7. Pseudopotentials 

 

The pseudopotential or effective potential is used in quantum mechanics and solid 

state physics as an approximation for the simplified description of complex systems with 

many particles. The pseudopotential approximation was first introduced by Hans Hellmann 

in 1930s [143]. The main idea of using pseudopotentials instead of true potentials for atoms 

is based on the fact that the orbitals of the core electrons are located closer to the nucleus 

and experience strong oscillations, which would require the expansion of the number of 

wave functions in terms of too large a set of basis functions (plane waves) when solving the 

Kohn-Sham equations. Only a valence electrons mainly determine the chemical and physical 

properties of materials. Therefore, the underlying basic electrons are most often chemically 

inert and can be considered in the frozen core approximation. In the pseudopotential 

approximation, core electrons are excluded from the solution of the many-electron problem 

by replacing the nuclear potential with a pseudopotential that models the core-valence and 

valence-nuclear interactions.  

( )r  = 
( ),

( ),

c

c

r r r

r r r

 

 

,    (3.28) 

where the rc is a suitable cut-off radius, ( ) r  is the all-electron wave function, and ( ) r  is 

the pseudo wave function.  

Due to the screening of the nucleus by core electrons, the pseudovalent orbitals have 

a smoother potential near the nucleus. The concept of pseudization is illustrated in the 
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Fig. 3.3. Such procedure is equivalent to the substitution of the strong electron-ion potential 

by weaker pseudopotential, which clearly expressed properties of the valence electrons 

including the relativistic effects and true valence wave functions (with radial nodes) are 

replaced by a pseudo wave functions (without nodes). Thuse, the studding system is replaced 

by a system consist of the pseudovatent electrons and pseudoions Fig. 3.4. The properties of 

the pseudoion are such that its potential outside a certain cut-off radius rc coincides with the 

potential of the true ion, but inside this sphere it is much weaker. It is precisely the weakness 

of the internal potential that is the main thing in the theory of pseudopotential. In this case, 

the Schrödinger equation can be solved inside a sphere of radius rc much easier, since the 

desired wave function is expanded in a much smaller number of basis functions. 

rc r

 
Figure 3.3. Schematic illustration of exact all electron (blue lines) and pseudopotential (red lines) 

and their corresponding wave functions inside and outside the core region of an atom at position r. 

The cut-off radius at which the all electron potential and pseudopotential values match is denoted as 

rc. 

 

On the Fig. 3.3 the two upper curves show the radial density distribution of the 

valence orbital 𝜙(r) and the pseudovalent orbital 𝜙PS(r), which is smoother near the nucleus 

(at r ≤ rc). The pseudopotential VPS(r) reproduces the central potential V(r) outside the core 

region (r > rc), but the singularity at zero is smoothed out. The use of the pseudopotential 

significantly reduces the computational costs (allows reduction of basis set size), not only 

due to a decrease in the number of orbitals, but mainly due to a decrease in the required basis 

sets.  
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For example, let us consider the carbon atom. Assume we want to simulate a carbon 

system from first-principles. We know that the valence electrons are responsible for bonding. 

Therefore, we can substitute the full electronic configuration of for the carbon atom with the 

pseudopotential and 2s22p2 valence states (for illustration see the Fig. 3.4). 

 

      C: 1s22s22p2    C (pseudo core): 2s22p2 

+6

-2

-4 -4

+4

 
Figure 3.4. Schematic representation of the frozen core and valence electrons for the construction of 

a pseudopotential of carbon atom.  

 

It should be noted that the pseudopotential method has played a decisive role in the 

development of the plane wave method in the Kon-Shem approximation, which is the 

dominant approach in DFT. Value of the rc is determined from the fitting of the calculated 

values e.g. coefficient of elasticity with experimental data. 

In general, the use of a pseudopotential should result in smooth pseudovalent orbitals 

that reproduce the chemical properties due to the valence orbitals most reliably, even when 

switching to a different electronic configuration and chemical environment. These key 

properties of the pseudopotential are called softness, and transferability. The softer the 

pseudopotential, the smoother the pseudovalent orbital will be. Therefore, the representation 

of the orbitals will require a smaller base set, which will lead to fast and efficient 

calculations. The transferability of a pseudopotential is the main advantage of the 

pseudopotential method instead of the all-electron based DFT methods implementation. A 

pseudopotentials are constructed from some certain (fixed) electronic configuration of the 

atom or ion which is isolated. That is why this pseudopotential reproduce the scuttering 

properties of a nucleus in this configuration. The transferability can be assessed by ability of 

the pseudopotential to reproduce values obtained by multielectronic calculations in a wide 

range of different chemical compounds or other test systems in order to correctly reproduce 
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the scattering for other atomic configurations and atomic environment. Strategies that can 

improve the mentioned properties of softness and transferability have been developed to 

build pseudopotential that meets these requirements. 

The most general form of the pseudopotential is as follows: 

,NL l

lm

V lm V lm      (3.29) 

where lm  is a spherical harmonics, Vl is a pseudopotential of the angular momentum l. The 

action of this operator leads to the expansion of the electron wave function into spherical 

harmonics, each of which is then multiplied by the corresponding pseudopotential. If the 

pseudopotential uses the same potential in each angular momentum is called a local 

pseudopotential. This type of the pseudopotentials is computationally much more efficient 

than nonlocal. 

The pseudopotentials are divided into two types called as norm-conserving 

pseudopotential (NCPP) and ultra-soft pseudopotential (USPP). 

 

 

3.7.1. Norm-conserving pseudopotential  

 

The pseudopotential approximation became especially popular after the appearance 

of the norm-conserving pseudopotentials. The first norm-conserving pseudopotential was 

proposed and developed by the by Kleinman and Bylander in 1982 [144]. This method has 

paved the new way to performing the accurate calculations of solid-state properties. Lets 

consider two of wave functions – pseudo-wave function PS  and all-electrons wave function 

AE . If the charge densities  within the core are constructed in the way to be equal for PS  

and AE  , the corresponding pseudopotential is called a norm-conserving [145,146]. A lot 

of the different pseudopotentials are generated to satisfy this condition: 

2 2

0 0

( ) ( )
c cr r

PP AEd d   r r r r ,    (3.30) 

For generation of a good ab initio pseudopotential there are few generally accepted 

criteria requirements should be matched for choosing the most optimal pseudopotential 

[145]: 

1. The pseudo-wave function should not have nodes. This is necessary to obtain a smooth 

pseudo-wave function; 
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2. The all-electron and pseudo valence eigen values agree for chosen atomic reference 

configuration (The eigenvalues of both wave functions must be equal/ should be the 

reproducible by the pseudovalent) 

PS AE  .     (3.31) 

3. All-electron pseudo valence wave functions agree beyond the chosen core radius rc. 

(Real and pseudo wave function agree outside the chosen core radius rc. (outside the 

core region) 

( ) ( ),PS  r r  for cr r .    (3.32) 

4. The logarithmic derivatives of all-electron and pseudo wave functions should agree at 

the core radius rc. 

5. The integrated charge inside core radius rc for each wave function agrees (the norm 

conservation criterion). (Charges concentrated inside a sphere with radius rс must 

coincide for both wave functions) 

2 * 2 *

0 0

( ) ( ) ( ) ( ) 0
c cr r

i j i j r dr r dr           r r r r . (3.33) 

6. The pseudo-wave function must be continuous and twice differentiable. 

7. The first energy derivative of the logarithmic derivative of the all-electron and pseudo 

wave functions agree at rc. 

The generalized norm-conserving condition can be written as follows [145] 

0
c c

ij i j i jr r
Q       .   (3.34) 

Points (1) and (2) guarantee that the NCPP and the true potential are the same outside 

the core region. 

Point (3) follows since the wave function and its radial derivative are continuous at 

Rc for any smooth potential. 

Point (4) imposes the conservation of the charge in the core region: 

2 2
2

0 0
| ( ) | ( )

c cr r

l l lQ drr r dr r    .   (3.35) 

Note that all-electron (AE) and pseudo wave functions are different inside the core 

region. 

Point (4) also means that the normalized pseudo-orbital and true orbital are equal 

outside the core region (different from OPW functions which are equal to the true functions 

only if it is not normalized). 

Point (5) is crucial for the generation of a good transferable potential. 
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3.7.2. Ultrasoft pseudopotential  

 

Ultrasoft pseudopotentials were introduced in 1990 by Vanderbilt in order to allow 

calculations to be performed with the lowest possible cutoff energy for the plane wave basis 

set [147]. The rationale behind USPP is that, in most cases, a high cutoff energy is only 

required for the plane wave basis set when there are tightly bound orbitals that have a 

substantial fraction of their weight inside the core region of the atom. In these situations, the 

only way to reduce the basis set is to violate the norm-conservation condition by removing 

the charge associated with these orbitals from the core region. Ultrasoft pseudopotentials 

relax the norm-conserving constraint to reduce the necessary basis-set size further at the 

expense of introducing a generalized eigenvalue problem [147]. 

 

 

3.8. Treatment of periodic systems 

 

To solve the one-electron problem, electrons are considered, which are described by 

a wave function ( ) r  in the potential field of ions, the charge of which is on average 

compensated by the charges of valence electrons. From the characteristics of the crystalline 

state it follows that this potential is periodic, ie U(r) has a three-dimensional lattice 

periodicity. As is known, in an ideal crystal, atoms are placed periodically in space. This 

means that there is a vector Rn at the displacement of the crystal by which the crystal is 

aligned with itself. Therefore, the points of the crystal with radius vectors (r) and (r + Rn) 

are physically equivalent, so 

U(r) = U(r + Rn).     (3.36) 

The potential of the periodic system is also periodic in direct space V(r) = V(r + R), 

where  

R = m1a1 + m2a2 + m3a3,     (3.37) 

and m1, m2, m3 are integers, a1, a2, and a3 are the basis vectors in three-dimensional space. 

The last relation expresses the condition of periodicity of the potential field of the crystal.  

If the wave function ( ) r  of the electron is nondegenerate, then in the periodic field 

of the crystal it differs from the wave function only by a constant factor С,  

( ) ( )n С   r R r .     (3.38) 

From the condition of normalization of the wave function it follows that 

|C|2 = 1,     (3.39) 

https://en.wikipedia.org/wiki/Pseudopotential#cite_note-vanderbilt-7
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and therefore, the factor C can be represented as 

( )ni
С e




k R .     (3.40) 

Since the square of the modulus of this quantity is equal to one, in the last expression 

k is a constant vector that characterizes the quantum state of the electron in the crystal. It is 

called the wave vector k = 2π/λ. It has the dimension of inverse length, so the product (k·Rn) 

is dimensionless. From the Eq. 3.36 and Eq. 3.40 follows that 

( )
( ) ( )

i
e


   nk R

nr R r .    (3.41) 

Therefore, the stationary wave function of the electron in the periodic field of the crystal 

depends on the wave vector and has the form 

( )( ) ( )ie U  k R

k kr r ,     (3.42) 

where ( )ie k R  is the plane wave, which propagates in the k direction and is periodic with the 

lattice period.  The functions of ( )( ) ( )ie U  k R

k kr r  type is called the Bloch functions, while 

the periodicity of its amplitude is the Bloch theorem. By the substitution of the Eq. (3.42) to 

Eq. (3.3) we will get 

( ) ( )H E  
k k

r r ,     (3.43) 

and therefore the energy of the electron in the crystal must depend on the wave vector k, ie 

E = E(k). Thus, the solution of the Schrödinger equation for an electron in the periodic field 

of a crystal is a propagating plane wave modulated with the lattice period, and the energy of 

the electron depends on the wave vector k. This means that in order to obtain fundamental 

results from the theory, there is no need to know the numerical values of the force field 

(which cannot be determined), it is enough to know that it is periodic and its period coincides 

with the lattice period. 

Compared with the wave vector of free electrons, the vector k, which characterizes 

the state of the wave function in the crystal, has certain features. One of them is expressed 

by relation (3.42) and is that the displacement on the crystal lattice vector R is reduced to 

the multiplication of the wave function by ( )ie k R . Another important feature of the wave 

vector is that to any vector k, which characterizes the state of the electron a crystal, you can 

add an arbitrary vector of the reciprocal lattice G, and such a change in k does not change 

the state of the electron. It follows that the vector k is determined up to the vector of the 

inverse lattice G, and the states of the electron with k and k + G are eqvivalent. Since the 

vector k is not uniquely defined, it acquires properties that distinguish it from the wave 

vector of free electrons. For this reason, k is not called a wave vector but a quasi-wave vector. 
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Accordingly, the associated momentum p = k is called a quasi-momentum, and particles 

moving in crystals and described by vectors k are called quasiparticles. 

Since the vector k is defined up to the vector G, therefore, an arbitrary function 

describing the crystal can be translated into an arbitrary (usually the first) Brillouin zone. 

This procedure is called reduction to the first zone of Brillouin. The advantage of the scheme 

of consolidated zones is that the analysis of the behavior of a certain function is sufficient to 

conduct only in one zone. 

 

 

3.9. The Kohn-Sham equation in reciprocal space 

 

There are different ways to explain the concept and usefulness of the reciprocal 

lattice. One popular way is to explain the nature of the interaction of matter with X-rays 

(detailed description here [148]). This concept is used in physics to solve some problems 

that are easier to solve in reciprocal space than in direct. A crystal is a set of atoms that can 

be thought of as a set of points that are evenly and periodically arranged in three-dimensional 

space. These atoms are located in special positions of the crystal lattice and are characterized 

by long-range order (this is an ideal crystal). Knowing the structure of the unit cell (atomic 

coordinates and lattice symmetry), a whole crystal can be constructed using the translational 

symmetry of this lattice. Any point of this crystal can be described by the vector rl which is 

a linear combination of primitive lattice parameters a1, a2, and a3 in linear space. Then the 

vector rl can be written as follows 

rl = l1a1 + l2a2 + l3a3,     (3.44) 

where li is an arbitrary integer numbers in range 0 < li < N. The N is limited by a number of 

unit cells in the corresponding direction. We will not explain the concept and the details of 

the diffraction here as this is outside the scope of this thesis. However, these concepts are 

explained in detail in [148]. A diffraction pattern of a crystal is a map of the reciprocal lattice 

vectors b1, b2, b3 and are the basis vectors in the reciprocal space. The reciprocal lattice b1, 

b2, b3 basis vectors can be mathematically constructed from the direct unit cell basis by the 

following relations 
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
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1 2 3

2π
| |




 

a a
b

a a a
.   (3.45) 

Each of this vector is orthogonal to two other lattice vectors. From the orthogonality of those 

three vectors follows the following relations 
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Then the linear space can be written by vectors  

Gh = h1b1+h2b2+ h3b3,     (3.47) 

where hi is an arbitrary integers numbers. Than the set of vectors Gh is usually called the 

reciprocal space, since it is the dual. If we define the reciprocal lattice with the vector G in 

way, that  

1ie  G R ,       (3.48) 

than the periodic part of Bloch function can be written as  

( ) ( ) i

n nu u e  G r

k k

G

r G ,    (3.49) 

where coefficients unk(G) obtained by the Fourier transform 

1
( ) ( ) i

n nu u e d 




 

G r

k k
G r r .    (3.50) 

By the Fourier transform  

( )( ) ( )i i i iV V e V V e V e e      Gr G r R Gr GR

G G G

G G G

r r R , (3.51) 

here VG   is a coefficient of transform. According to the Bloch theorem, the wave function 

can be written as  

, ,( ) ( )KS i

n nr e u  kr

k k
r ,     (3.52) 

where un,k(r) is a function which has the same periodicity as the potential, that is un,k(r) = 

un,k(r + R). Therefore, the wave function can be derived as 

' ( ')

, , , ' , '

' '

( ) ( )KS i i i i i

n n n nr e u e u e e u e 

     kr kr G r kr k G r

k k k G k G

G G

r , (3.53) 

where , 'nu k G  is the coefficient of the Fourier transform and G’ is the reciprocal vector as G 

in Eq. 3.51. Substituting Eq. 3.51 and 3.52 into Kohn-Sham equation are derived as  
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 (3.54) 

The right side of the Kohn-Sam equation are derived as 
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 ( ')
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 
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k k k k+G
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From the equation 3.54 and 3.55 the KS equation in reciprocal space for each G’ is obtained 

as 

2

, ' ' , , , '

( ')

2

KS

n n nV u u 

 
  

 
 G G G G k+G k k+G

G'

k G ,     (3.56) 

For each k the eigen value problem in Eq. 3.56 for the Hamiltonian matrix with the elements 

HG,G’ and overlaps matrix with elements SG,G’ is solved by the standard method of 

diagonalization. Thus ,

KS

n k
 and 

, 'nu k G
 are calculated. Further wave functions with 

, 'nu k G
 are 

obtained (Eq. 3.53).  

Taking into account plane waves, the electronic energy spectrum of crystal 

( )n n 
k

k  in the zone with number n at the k-point of the first Brillouin zone is sought as 

a solution of the Kohn-Sham equation [134,148] which in the basis of plane waves has the 

form: 
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,  (3.57) 

where VH is the electrons potential (Hartrie potential); VXC is the exchange-correlation 

potential that depends on electron density; ps

locV  is the local and ps

nlocV  nonlocal parts of norm 

conserving pseudopotential; cn,k is the variational coefficient of wave function expending of 

electron in the crystal by the plane waves, G is the reciprocal cell vectors. In order to solve 

the system of the Eq. 3.10 the Fourier coefficients for the potentials VH, VXC, and 

pseudopotentials ps

locV , and  ps

nlocV  should be known. Here the accuracy of the description of 

the wave function and therefore the accuracy of the calculation of their energies also depends 

on how many basis functions there are in Eq. 3.53. The number of plane waves used in the 

calculations are defined by the cut-off energy for the plane wave basis set (Ecut). The 

calculation time significantly depends on the size of the Hamiltonian matrix (Ecut) over time 

to diagonalize the Hamiltonian matrix. The coefficients unk(G) for the eigenfunctions of the 

lowest energy decrease exponentially with the kinetic energy (k+G)2/2. Considered in the 

sum of plane waves are selected using the kinetic energy of the cutoff Ecut (which determines 

the sphere of plane waves). The Ecut is used to cut-off the kinetic energy that controls the 

number of plane waves at a given point k. All plane waves inside this "basis sphere" with 

center in k are included in the basis (Fig. 3.1). 
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Figure 3.5. Schematic representation of the cutoff energy concept. 

 

 

3.10. Short description of the CASTEP code 

 

The CASTEP application [149] (CAmbridge Serial Total Energy Package) used in 

this work is designed for use on Linux, MacOS, and Windows operating systems. It is written 

in the programming language Fortran 2003, and its architecture allows for parallel 

calculations on multiple processors. The program is designed to calculate the electronic, 

optical, elastic, vibrational, and other properties for structure with different symmetry and 

composition form the first principles. The objects of study can be from simple molecules to 

complex polyatomic compounds. The basis of plane waves required for calculations is 

formed on the basis of norm-conserving or ultrasoft pseudopotentials. The program provides 

for the use of exchange-correlation functionalities in the approximation of LDA, GGA, HF, 

sX, PBE0, B3LYP, SHE03, SHE06. The program is a set of tools and methods for interaction 

between the user and the computer system, gives opportunities to work with it: or through 

the use of text input files (scripts) that contain all the necessary parameters for the program; 

or through a graphical interface.  

To achieve the goals and solve our problems, from the many possibilities inherent in 

the software code CASTEP [149], we used the following: solving Kohn-Sham equations and 

determining the energy spectra of crystals, calculating the electron density distribution, 

calculating total and partial density of states, calculation of optical spectra, calculation of 

atomic charges and Milliken population, optimization of geometric structure, calculation of 

effective Born charges, dielectric constant and phonon frequencies, calculation of Raman 

spectra and infrared spectra, calculation of elastic properties. 
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The calculation of the energy band structure of the studied crystals was performed 

within the framework of the density functional theory, for which the electron density was 

calculated as a result of the procedure of structure optimization and self-consistency.  
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3.11. Conclusions 

 

1. This section presents the basics of the quantum mechanical approach for describing 

quantum systems. A review of the methods of calculations of the band-energy structure and 

physical properties of crystalline materials is carried out. 

2. The basic principles of the density functional theory as one of the modern methods 

of computer materials science are considered. The basic algorithms and approximations used 

for application in solid state physics are discussed. The use of pseudopotential for 

simplification of the description of electron-ion interaction in the form of ultrasoft and norm-

conserving pseudopotential is considered. 

3. The method of studying the electronic structure, optical spectra, density of states, 

and electron density distribution of crystals in the framework of the electron density 

functional theory by solving the Kohn-Shem equation has been shown. 

4. The main approximations used to describe the exchange-correlation interaction of 

electrons in solids are presented and considered. Their peculiarities and limitations are 

discussed. The main types of exchange-correlation functionals such as LDA, GGA, B3LYP 

are considered.  
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4. STRUCTURE, ELECTRONIC AND PHYSICAL PROPERTIES OF 

I-III-VI2 GROUP CRYSTALS 

 

 

 

4.1. Parameters of calculation and crystal structure optimization 

 

The first principles of calculations of total energy, band structure and properties of 

the family of ternary semiconductor crystals of I-III-VI2 (I = Ag Cu, III = Al, Ga, In, VI = 

S, Se, Te) group are carried out in the framework of density functional theory (DFT) [18,19]. 

The calculations are performed using the Cambridge Serial Total Energy Package 

(CASTEP) code, which is implementation of DFT and is a modulus of the Materials Studio 

program [150]. The program uses a pseudopotential method to describe the ionic core, which 

significantly simplifies computer calculations compared to methods using all-electron wave 

functions. 

When calculating the electronic structure and properties of materials the ion-electron 

interaction within calculations is described by the Vanderbilt ultrasoft pseudopotential 

[147]. This pseudopotential require much lower plane wave cutoff energy and has a better 

transferability in comparison with the norm-conserving one. As basis functions for 

describing electronic states the wave functions in form of plane waves are used. 

The cutoff energy (maximum kinetics energy) Ecut = |k + G|2/2 for the plane wave 

basis was fixed to be equal to 350 eV. The cut-off energy value was selected by performing 

a test of the total energy convergence of the system in relation to the value of the cut-off 

energy. The valence electrons for atoms that form the I-III-VI2 group have the following 

configuration: Cu 3d10 4s1; Ag 4d10 5s1; Al 3s2 3p1; Ga 3d10 4s2 4p1; In 4d10 5s2 5p1; S 3s2 

3p4; Se 4s2 4p4; Te 5s2 5p4. 

The local density approximation (LDA) with the Ceperley – Alder – Perdew –Zunger 

(CA – PZ) parameterization [136,151] and the generalized gradient approximation (GGA) 

with the Perdew – Burke – Ernzerhof parameterization (PBE) [47] were used to take into 

account the exchange and correlation effects. These methods have shown themselves well 

in other theoretical studies performed by various authors [64–66,152,153]. All the 

properties of the investigated crystals were obtained from the self-consistent solution of the 
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Kon-Shem equations. For self-consistent electronic minimization, the eigen energy 

convergence tolerance was chosen at 5×10–7 eV and the tolerance of the electronic total 

energy convergence was 10–5 eV/atom. 

The BZ sampling for calculation of the electronic structure and optical spectra was 

implemented using Monkhorst-Pack k-mesh [154]. For calculation of total energy, the 

3×3×1 k-mesh was used. For the band structure calculations, density of states N(E) and 

optical properties of the crystals the 4×4×2 greed was used. The choice of k-mesh was made 

similarly to the choice of cut-off energy during the test. The study of the convergence of the 

total energy of the system with respect to the size of the k-mesh was carried out. From the 

convergence test the proper k-mesh wsa chosen. In order to prevent the influence of the basis 

and k-mesh on the results of calculations, the optimal value was chosen uniformly. 

Appropriate test calculations were performed for different cation-anionic compositions of 

compounds of group I-III-VI2. 

In order to calculate the parameters of the crystals for the electron density n(r) in the 

ground state, the geometric optimization of the crystal unit cell was performed. The 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [155] was used for geometry 

optimization of the crystal before calculation of the electronic characteristics (total electronic 

energy, band energy dispersion E(k), total and partial density of states (PDOS)), dielectric 

functions and vibrational properties. For the geometric optimization of the crystal structure, 

the crystal lattice was relaxed. This process implies optimization of the crystal’s unit cell 

parameters and relaxation of the atomic positions. The crystal’s space group symmetry was 

constrained during the optimization process in order to prevent any structure 

transformations/distortions. The convergence parameters used during optimization were as 

follows: the maximum force 3×10–2 eV/Å; maximum pressure 5×10–3 GPa and maximum 

displacement 1×10–4 Å. 

Since chalcopyrite crystals belong to 42I d  symmetry, the crystal lattice in its 

structure contains 4 primitive cells. Each unit cell contains of 8 atoms. It is known from solid 

state physics that a primitive cell unambiguously describes the structure and physical 

properties of a material. Therefore, we used a primitive cell instead of a crystal lattice to 

calculate the band-energy structure of the studied group of crystals. The structure of a 

primitive cell for crystals of group I-III-VI2 is shown in Fig. 4.1. Here the yellow balls are 

atoms of group I (I = Ag, Cu), the red balls are atoms of group III (III = Al, Ga, In) and the 

green balls are atoms of group VI (VI = S, Se, and Te). 
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a)     b) 

Figure 4.1. Structure of I-III-VI2 group crystals, where  – atom I;  – atom III; 

  – atom VI: a) crystal unit cell; b) primitive cell. 

 

The structural parameters of the studied materials of the group I-III-VI2 were taken 

from the literature where their experimental study was carried out [91,156–163]. The unit 

cell parameters a, c, and the unit cell volume V for 18 crystals are given in Table 4.1. 

Additionally, in Table 4.2, we listed the fractional experimental coordinates of the atoms in 

the crystal lattice are expressed in units of the constant lattice a and c.  

Geometriy optimization of crystal lattice was performed for all investigated 

chalcopyrite-type crystals within the framework of the standard procedure available in the 

CASTEP program. The optimization procedure was carried out until the convergence criteria 

(specified accuracy) were reached. The input data for this process was experimental 

information on the crystal structure published in [91,156–163]. The equilibrium parameters 

of the crystal lattice obtained as a result of optimization are given in Table 4.1 and the 

corresponding coordinates of the ions are collected in Table 4.2. This procedure is mandatory 

when performing any calculations based on the density functionality theory, regardless of 

the program on which the calculations are performed. This minimum value of the energy of 

the system actually determines the charge density distribution of n(r), which is as close as 

possible to the real state of the studied crystals. 

 From the analysis of Table. 4.1 it can be noted that the optimized crystal lattices are 

quite similar to each other and showed good agreement with the experimental results of other 

authors. However, it is easy to see that the values of the unit cell volume and the lattice 

parameters are slightly different from the experimental values. Considering the volume of 

the unit cell of crystals, it is seen that for all crystals of group I-III-VI2 there is an 
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overestimation of the volume of the unit cell obtained during optimization using the GGA 

functional. At the same time, the volume of the unit cell obtained with the LDA functional 

shows a slight underestimation. This deviation of the ΔV volume for chalcopyrite crystals 

ranges from 4.47 Å3 for CuAlTe2 crystals (for GGA) to 45.39 Å3 for AgInTe2 crystal (for 

LDA). Thus, the maximum deviation of the unit cell volume is calculated to be 9 % for the 

AgGaTe2 crystal (GGA) and the minimum 0.4 % for CuAlSe2 (GGA). A more detailed 

consideration of the deviation of the chalcopyrite lattice parameters showed the following 

feature. When using the GGA functional, the lattice parameter a is overestimated for all 

crystals of group I-III-VI2, except for CuAlSe2, for which this parameter is slightly less than 

the experimental value. At the same time, the LDA functional used in the optimization of 

the crystal structure showed underestimation of the value of the parameter a. However, the 

situation with the parameter c is somewhat different. As can be seen from the table, the use 

of the GGA functional gives a slightly higher value of the parameter c for the crystals of the 

group. However, when calculating with the LDA functional for Ag-containing crystals, the 

parameter c is higher than the experimental one by 0.2 – 1.9 % and lower than when using 

the GGA functional. 

To compare the optimized crystal structure with the experimental one (Tables 4.1 and 

4.2), the parameter of relative deviation of the unit cell volume dr and relative mean root 

squared deviation Dr of the distance matrix dij was used as was done e.g. in [64,65].  
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c c
r

c

V V
d

V


     (4.1) 

where ( )opt

cV  and (exp)

cV  are the optimized and experimental unit cell volume, respectively. 

The relative root mean squared deviation can be calculated using the Eq. 4.2, 
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
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where n is a number of atoms, 
opt

ijd  and 
exp

ijd  are the optimized and experimental distances 

between i and j atom, respectively.  Previously, this method of estimating the deviation of 

the optimized structure of the crystal lattice was used in Refs. [65,152,153] for Ag2SiS3, 

K2SO4, LiNH4SO4 etc. crystals. The calculated values of the deviation of the lattice volume 

dr and the deviation of the structure Dr are shown in Figure 4.2. These parameters are 

calculated by Eqs. (4.1) and (4.2) for crystal lattices optimized using LDA and GGA 

finctionals. The figure shows that the parameters dr for volume change calculated with LDA 
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and GGA methods are quite similar. The relative deviation of the unit cell volume for the 

GGA functional is positive because the calculated volumes are larger than the experimental 

ones. For LDA functional, these parameters become negative. This parameter oscillates near 

the mark 0.02 for GGA functional and around 0.01 for LDA. For the parameter Dr, the 

calculated values are close to both methods of structure optimization. The parameter Dr = 

0.06 is observed for the CuInSe2 crystal. In general, the value of this parameter is also small 

as for dr. Generally, the Dr value is close to 0.02. This indicates that the optimized crystal 

structure is very similar to that obtained experimentally in [91,156–163], i.e. the method 

gives good agreement. 

The evaluation and analysis of the crystal lattice deformation parameters is important 

when considering the crystal structure of diamond-like crystals. Using formulas given in 

Section 2.1.1, we obtained the values of the tetragonal deformation parameter η and the 

anion displacement parameter u. The corresponding calculations were performed for both 

the experimental structure and optimized with the BFGS method. The values of the 

parameters η and u are obtained from experimental data and optimized using LDA and GGA 

functionals are collected in Table 4.1. As can be seen from the table, for most crystals the 

parameter η is less than one. This suggests that the crystals are compressed in the c-direction. 

For crystals CuGaSe2, CuGaTe2, and CuInX2 (where X = S, Se, and Te) there is almost 

equality of the parameter η to unity. In order to find the structure – structure relationship, we 

considered the relation between the tetragonal deformation parameter η and the anion 

displacement parameter u. In Fig. 4.3. shows the relationship between the parameter of the 

displacement of the chalcogen atom from the parameter of tetrahedral deformation of the 

cell of chalcopyrite crystals η. The figure contains both points obtained from the structure 

optimized using LDA and GGA functionalities, and experimental parameters. From Fig. 4.3. 

it is seen that the points corresponding to the 18 crystals of group I-III-VI2 tend to almost 

linear change of u(η) function. According to this, we conducted a linear regression analysis 

of this dependence. In order to assess in more detail the degree of correlation of these two 

material parameters, we analyzed their correlation by calculating the Pearson’s correlation 

coefficient Rxy (or R) which is the correlation index (linear dependence) between two 

variables x = {x1, x2, …, xn} and y ={y1, y2, …, yn}. This parameter is determined from the 

ratio  
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where 
1

2 n

i

i

x x
n 

  and 
1

2 n

i

i

y y
n 

  is the sample mean x and y, respectively. The Pearson’s 

correlation coefficient takes the values from [−1, +1]. The closer R is to –1 or +1, the stronger 

linear correlation is.  If the R = 0, there is no correlation between the two sets of parameters. 

It can be seen from the figures that the points fit well by the linear fit, and these lines are 

described by the equations: 1) u(η) = 0.64683 – 0.3815η — for experimental data; 2) u(η) = 

0.66436 – 0.40593η — for LDA calculated; 3) u(η) = 0.64683 – 0.3815η — for GGA 

calculated parameters. Hence we can say that in crystals I-III-VI2 there is a negative 

correlation u with η. The corresponding values of Pearson's coefficients are –0.84, –0.97, –

0.97 for experiment, and calculated with GGA and LDA functionals data, respectively. 
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Figure 4.2. Calculated parameter of relative deviation of the unit cell volume dr, and relative 

root mean squared deviation Dr calculated for I-III-VI2 crystals. 
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Figure 4.3. Correlation of u with η distortion parameters obtained from experimental, 

LDA and GGA calculated crystal structure. 

 

In general, the system of investigated chalcopyrite crystals of I-III-VI2 group can be 

presented as in Fig. 4.4. This systematization is based on the Welker’s diagram proposed for 

the search for hypothetical binary compounds A3B5 with semiconductor properties [164]. 
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Figure 4.4. Welkers’s diagram for AIBIIIC2
VI (A = Ag, Cu, B = Al, Ga, In, C = S, Se, and Te). 

 

This representation provides a regularity in the study or prediction of physicochemical 

properties of large groups of crystals depending on the chemical composition and position 

in isoanionic and isocationic series.  In our case the Welkers’s diagram for the system of 

chalcopyrite crystals I-III-VI2 is shown in Fig. 4.4. 
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Table 4.1. Reported experimental and calculated lattice parameters for I-III-VI2 group 

chalcopyrite. 

Compound Source a = b, Å c, Å V, Å3 c/2a u 

AgAlS2 

LDA 5.5409 10.4139 319.73 0.940 0.295 

GGA 5.7453 10.5322 347.66 0.917 0.293 

Exp.[156] 5.6950 10.2600 332.80 0.901 0.298 

AgAlSe2 

LDA 5.8135 10.9683 370.70 0.943 0.282 

GGA 5.9960 11.0548 397.45 0.922 0.288 

Exp. [156] 5.9560 10.7500 381.35 0.902 0.295 

AgAlTe2 

LDA 6.2122 12.0185 463.83 0.967 0.274 

GGA 6.4212 12.3004 507.18 0.958 0.278 

Exp. [156] 6.2960 11.8300 468.93 0.940 0.281 

AgGaS2 

LDA 5.5798 10.4946 326.75 0.940 0.297 

GGA 5.7850 10.6997 358.08 0.925 0.289 

Exp. [156] 5.7540 10.2950 340.85 0.895 0.296 

AgGaSe2 

LDA 5.8310 11.0636 376.17 0.949 0.273 

GGA 6.0194 11.2238 406.69 0.932 0.282 

Exp.[157] 5.9921 10.8830 390.76 0.908 0.288 

AgGaTe2 

LDA 6.2113 12.0551 465.10 0.970 0.274 

GGA 6.4423 12.4072 514.94 0.963 0.276 

Exp. [156] 6.2880 11.9400 472.10 0.949 0.279 

AgInS2 

LDA 5.7529 11.3067 374.22 0.983 0.274 

GGA 5.9518 11.6241 411.78 0.977 0.270 

Exp.[158] 5.8760 11.1980 386.64 0.953 0.276 

AgInSe2 

LDA 6.0088 11.7901 425.69 0.981 0.272 

GGA 6.1921 12.0443 461.82 0.973 0.268 

Exp.[159] 6.1038 11.7118 436.34 0.959 0.272 

AgInTe2 

LDA 6.3960 12.6687 518.28 0.990 0.272 

GGA 6.6289 13.0571 573.77 0.985 0.264 

Exp.[160] 6.4672 12.6331 528.38 0.977 0.267 

CuAlS2 

LDA 5.1910 10.3461 278.80 0.997 0.273 

GGA 5.3343 10.5492 300.18 0.989 0.268 

Exp.[161] 5.3336 10.4440 297.10 0.979 0.271 

CuAlSe2 

LDA 5.4815 10.8974 327.44 0.994 0.270 

GGA 5.5934 11.0656 346.21 0.989 0.266 

Exp. [156] 5.6170 10.9220 344.60 0.972 0.270 

CuAlTe2 

LDA 5.9421 11.8123 417.08 0.994 0.267 

GGA 6.1145 12.1258 453.36 0.992 0.263 

Exp.[156] 5.9760 11.8040 421.55 0.988 0.265 

CuGaS2 

LDA 5.2231 10.3757 283.07 0.993 0.268 

GGA 5.3719 10.6319 306.81 0.990 0.265 

Exp.[91] 5.3474 10.4743 299.51 0.979 0.268 

CuGaSe2 

LDA 5.4995 10.9354 330.74 0.994 0.270 

GGA 5.6301 11.1422 353.19 0.990 0.264 

Exp.[162] 5.5550 11.2100 345.92 1.009 0.263 

CuGaTe2 

LDA 5.9304 11.8099 415.36 0.996 0.266 

GGA 6.1123 12.1919 455.50 0.997 0.261 

Exp.[156] 5.9940 11.9100 427.90 0.994 0.262 

CuInS2 

LDA 5.4341 10.9370 322.98 1.006 0.257 

GGA 5.5868 11.2576 351.38 1.008 0.252 

Exp. [91] 5.5228 11.1323 339.57 1.008 0.253 

CuInSe2 

LDA 5.7147 11.4112 372.67 0.998 0.273 

GGA 5.8454 11.7076 400.05 1.001 0.253 

Exp.[163] 5.7876 11.6045 388.71 1.003 0.254 

CuInTe2 

LDA 6.1243 12.2520 459.55 1.000 0.257 

GGA 6.3354 12.6236 506.68 0.996 0.253 

Exp.[156] 6.1670 12.3400 469.31 1.001 0.253 
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Table 4.2. The experimental and calculated fractional atomic coordinates for I-III-VI2 group crystals. 

Crystal Atom Ref. 
Exp. LDA GGA 

x/a y/b z/c x/a y/b z/c x/a y/b z/c 

1 2 3 4 5 6 7 8 9 10 11 12 
A

g
A

lS
2
 Ag 

[156] 

0 0 0 0 0 0 0 0 0 

Al 0 0 0.5 0 0 0.5 0 0 0.5 

S 0.300 0.25 0.125 0.286 0.25 0.125 0.294 0.25 0.125 

A
g

A
lS

e 2
 

Ag 

[156] 

0 0 0 0 0 0 0 0 0 

Al 0 0 0.5 0 0 0.5 0 0 0.5 

Se 0.270 0.25 0.125 0.278 0.25 0.125 0.287 0.25 0.125 

A
g

A
lT

e 2
 

Ag 

[156] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

Te 0.260 0.25 0.125 0.264 0.25 0.125 0.267 0.25 0.125 

A
g

G
aS

2
 

Ag 

[156] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

S 0.304 0.25 0.125 0.280 0.25 0.125 0.286 0.25 0.125 

A
g

G
aS

e 2
 

Ag 

[157] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

Se 0.288 0.25 0.125 0.273 0.25 0.125 0.282 0.25 0.125 

A
g

G
aT

e 2
 

Ag 

[156] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

Te 0.260 0.25 0.125 0.263 0.25 0.125 0.265 0.25 0.125 

A
g

In
S

2
 Ag 

[158] 

0 0 0 0 0 0 0 0 0 

In 0 0 0.5 0 0 0.5 0 0 0.5 

S 0.264 0.25 0.125 0.251 0.25 0.125 0.259 0.25 0.125 

A
g

In
S

e 2
 

Ag 

[159] 

0 0 0 0 0 0 0 0 0 

In 0 0 0.5 0 0 0.5 0 0 0.5 

Se 0.258 0.25 0.125 0.246 0.25 0.125 0.251 0.25 0.125 

A
g

In
T

e 2
 

Ag 

[160] 

0 0 0 0 0 0 0 0 0 

In 0 0 0.5 0 0 0.5 0 0 0.5 

Te 0.262 0.25 0.125 0.240 0.25 0.125 0.244 0.25 0.125 

C
u

A
lS

2
 Cu 

[161] 

0 0 0 0 0 0 0 0 0 

Al 0 0 0.5 0 0 0.5 0 0 0.5 

S 0.268 0.25 0.125 0.251 0.25 0.125 0.257 0.25 0.125 

C
u

A
lS

e 2
 

Cu 

[156] 

0 0 0 0 0 0 0 0 0 

Al 0 0 0.5 0 0 0.5 0 0 0.5 

Se 0.260 0.25 0.125 0.247 0.25 0.125 0.251 0.25 0.125 

C
u

A
lT

e 2
 

Cu 

[156] 

0 0 0 0 0 0 0 0 0 

Al 0 0 0.5 0 0 0.5 0 0 0.5 

Te 0.250 0.25 0.125 0.238 0.25 0.125 0.243 0.25 0.125 

C
u

G
aS

2
 

Cu 

[91] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

S 0.254 0.25 0.125 0.245 0.25 0.125 0.248 0.25 0.125 

C
u

G
aS

e 2
 

Cu 

[162] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

Se 0.259 0.25 0.125 0.241 0.25 0.125 0.248 0.25 0.125 

C
u

G
aT

e 2
 

Cu 

[156] 

0 0 0 0 0 0 0 0 0 

Ga 0 0 0.5 0 0 0.5 0 0 0.5 

Te 0.250 0.25 0.125 0.236 0.25 0.125 0.238 0.25 0.125 
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1 2 3 4 5 6 7 8 9 10 11 12 

C
u

In
S

2
 Cu 

[91] 

0 0 0 0 0 0 0 0 0 

In 0 0 0.5 0 0 0.5 0 0 0.5 

S 0.229 0.25 0.125 0.214 0.25 0.125 0.219 0.25 0.125 
C

u
In

S
e 2

 

Cu 

[163] 

0 0 0 0 0 0 0 0 0 

In 0 0 0.5 0 0 0.5 0 0 0.5 

Se 0.269 0.25 0.125 0.214 0.25 0.125 0.218 0.25 0.125 

C
u

In
T

e 2
 

Cu 

[156] 

0 0 0 0 0 0 0 0 0 

In 0 0 0.5 0 0 0.5 0 0 0.5 

Te 0.225 0.25 0.125 0.213 0.25 0.125 0.215 0.25 0.125 

 

 

 

4.2. Electronic structure of I-III-VI2 group crystals 

 
 

 

4.2.1. Band structure calculation 

 
The wide application areas of the ternary semiconductors are determined by their 

band gaps. The sutable for practical use in different devices band gap value, its character 

(direct or indirect gap) and dispersion of the electronic states generally determine the 

physical properties of a studied material, making the investigation of electronic properties to 

be a very important problem. Its study is necessary to understand the physical phenomena 

observed in the experiment and is important for explaining many physical processes and 

interpreting the experimental results. The electronic structure also provide an important 

information about the material, which can be used for development of devices based on these 

materials. Therefore, the study of the band structure is an important and actual task. The 

structure of the edges of the valence band and the conduction band plays an important role 

for diamond-like materials. Depending on the relative position of the absolute maxima and 

minima, as well as the symmetry of the respective energy levels, there are direct and indirect 

forbidden gap materials. 

The band structure of the I-III-VI2 crystals was calculated using the pseudopotential 

method in the framework of the DFT with plane waves as the basis functions using LDA 

and GGA methods which are known to be widely used for similar calculations of the material 

properties of different nature [33,64,66,152]. These methods have proven to be in good 

agreement with the experimental results and at the same time do not require significant 

computational time as when using hybrid methods or functional of a much more complex 
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form. Before calculating the electronic structure and properties of the crystal, a test of the 

convergence of the total energy with respect to the size of the k-grid and the cut-off energy 

of plane waves was performed. The calculation of the band energy structure was performed 

at points of high symmetry and along the lines connecting them in the first Brillouin zone. 

As mentioned earlier, calculations in this work were performed for a primitive cell of crystals 

I-III-VI2. The general view of the first Brillouin zone for the tetragonal symmetry of the 

chalcopyrite crystal cell (a) and for its primitive cell (b) is shown in Fig. 4.5. In current study, 

the calculated for I-III-VI2 crystals band structure is obtained using the LDA and GGA 

functionals. The results obtained by these two methods are quite similar and qualitatively do 

not differ. Thus, for the sake of brevity in the further analysis we will mainly use the results 

obtained from the GGA functional. The calculated band-energy diagrams E(k) of crystals  

 

    

a)       b) 

Figure 4.5. The first Brilluoin zone structure for unit cell (a) and primitive cell (b) of the 

chalcopyrite I-III-VI2 group crystals. 

 

I-III-VI2 were constructed at points and along the directions of high symmetry in the 1-st BZ 

as shown in Fig. 4.6 and Fig. 4.7 in the following directions: Z → Г → X → P → N → Г. 

The coordinates of these points are as follows (in units of 2π/ai): Z(0, 0, 1/2),  

A(1/2, 1/2, 1/2), M(1/2, 1/2, 0), Г(0, 0, 0), R(0, 1/2, 1/2), X(0, 1/2, 0), Г(0, 0, 0).   

The calculation of the band energy structure was performed in the energy range from 

–20 eV to 15 eV. For a more detailed analysis of the structure of energy levels of the crystals 

of studied group, the band diagram is constructed in the vicinity of the band gap. Figs. 4.6 

and 4.7 shows the band energy diagram of the studied compounds in the energy range from 

–8 to 8 eV obtained by GGA XC functional [152,165,166]. This allows us to better analyze 
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the structure of the electronic levels of the crystal, which correspond to the transitions of the 

electron near the absorption edge. 

The energy levels for crystals of I-III-VI2 group can be divided into two zones. The 

conduction band for the studied crystals is formed by energy levels with energies greater 

than the energy Eg, and the valence band is located at energies less than 0 eV. In current 

study, this value corresponds to the Fermi level and is comparable to the valence band 

maximum. As one can see, the band gap of all investigated crystals is of direct type. The 

conduction band minima and valence band maxima are located at the center of BZ and 

labeled as Г. Such features obtained by us coincide with the results of calculations obtained 

by other authors in [31,33,45,53]. At the same time, the direct type of forbidden zone was 

confirmed by studies of the edge of fundamental absorption [167–169] and others.  

For all eighteen crystals of the study group, the theoretically calculated values of the 

band gap Eg for LDA and GGA functionals are shown in Fig. 4.8. It can be noted that all 

crystals can be divided into two groups of materials with a similar tendency to change Eg. 

The first group of materials is crystals where the cation I is formed by silver ions of Ag, 

which occupy position 4a in the crystal lattice. The second group of crystals is formed by 

copper atoms as cations of group I. The largest band gap in both rows of crystals obtained 

for compounds AAlS2, where A = Cu, Ag. The largest band gap value is 2.01 eV (1.99 eV) 

for the AgAlS2 crystal obtained for LDA (GGA) functionals, respectively. This value is less 

than the experimental one (3.15 – 3.2 eV) for the AgAlS2 crystal presented in Refs. [13,42]. 

This underestimation is about 30% of the experimental value of Eg. The CuAlS2 crystal 

showed a slightly lower value of Eg equal to 1.93 (1.79) for LDA (GGA) functionals. The 

experimental value of the band gap for it is Eg = 3.5 eV [170].  

For clarity of comparison of experimental and theoretical band gap values the 

dependence of its experimental value on theoretically received in this work is constructed. 

Fig. 4.9 summarize DFT calculated band gaps and their comparison with experimental data 

from literature [1,42,43]. The figure shows that the values of the band gap for both exchange-

correlation functionals are smaller than the experimental values for the whole group 

I-III-VI2. This underestimation is a typical characteristic of these DFT-based methods, which 

is well known in the literature [66,134]. Also, it is reported that such an underestimation can 

be up to 50 % or more of the actual value of Eg, and depends on the specific material. 

Previously, we obtained such an underestimation for a number of others, both semiconductor 

(such as Ag2SiS3 [152], MnVO4 [171], LiNa5MoO30 [66], Bi3TeBO9 [172], etc.) and   
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Figure 4.6. Band structure of AgBC2 (B = Al, Ga, and In; C = S, Se, and Te) crystals 

calculated using GGA functional a) AgAlS2; b) AgAlSe2; c) AgAlTe2; d) AgGaS2; 

e) AgGaSe2; f) AgGaTe2; g) AgInS2; h) AgInSe2; i) AgInTe2. 
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Figure 4.7. Band structure of CuBC2 (B = Al, Ga, and In; C = S, Se, and Te) crystals calculated using 

GGA functional a) AgAlS2; b) AgAlSe2; c) CuAlTe2; d) CuGaS2;  

e) CuGaSe2; f) CuGaTe2; g) CuInS2; h) CuInSe2; i) CuInTe2. 
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Figure 4.8. The band gap values of the I-III-VI2 group crystals calculated using the LDA 

and GGA functionals. 

 

dielectric crystals with a large band gap (LiNH4SO4 [64,65], K1.75(NH4)0.25SO4 [173], 

LiNaSO4 [174] etc.). We established that this underestimation in the number of crystals 

A2BX4 group is about 2 eV [64,65,173,174]. A few general trends are observed from Figs. 

4.9. The points in the figure can be divided into three regions. The region of the largest 

values of Eg corresponds to AgAlS2 CuAlS2 crystals. Another region is formed by AgAlSe2, 

AgAlTe2, AgGaS2, CuAlSe2, CuAlTe2, and CuGaS2 crystals. The third region, which is 

characterized by the smallest band gap, includes AgGaSe2, AgGaTe2, AgInS2, AgInSe2, 

AgInTe2, CuGaSe2, CuGaTe2, CuInS2, CuInSe2, and CuInTe2 crystals. In general, the band 

gap increases with an increase of electronegativity of the III and VI ions: from In to Ga to 

Al and from Te to Se to S. There is no general trend when considering the effect of the I 

cations.  

It is well known that the two functionals used here (LDA and GGA) which are not 

hybrid tend to underestimate the band gap. Nevertheless, it is worth noting that the 

calculations performed in this study does not include any exitonic or quasiparticle effects. 

Also, it is should be mentioned that the calculations with DFT performed using CASTEP 

code can not be performed using the spin-orbit coupling. For some materials is observed 

significant spin-orbit coupling effects. They can lead to the splitting of band gap by up to 1 

eV.  
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Figure 4.9. Comparison between experimental and DFT calculated band gaps of I-III-VI2 

chalcopyrites.  

 

Considering the parameters of the band-energy structure of the crystals of group 

I-III-VI2, we constructed the dependence of the band gap of the molar mass of the crystal for 

eighteen crystals of the studied group. Corresponding dependences Eg(μ) for calculation with 

the LDA and GGA functionals data together with the experimental values of bandgap are 

shown on Fig. 4.10. As one can see, the obtained theoretical values of bandgap are smaller 

than the experimental because drawback of those two methods. Hence, it should be 

mentioned, that for both mathods, there is a functional dependence of Eg(μ), similar to the 

experimental one. There is a negative correlation between the band gap and the molar mass 

of the crystal. The results of linear regression are shown by the dushed line in Figs. 4.10. 

The figure shows the equation for the lines describing this dependence. The calculated values 

of the Pearson’s coefficient are: 0.64 for LDA; 0.66 for GGA; 0.81 for experimental values. 

From the obtained Pearson’s coefficients it follows that the calculated values of the band 

gap are less correlated with the molar mass than the experimental ones. 

For chalcopyrite crystals, there is a significant reduction in the band gap compared to 

zinc dlende for which the band gap is in the range of 2.4 eV for CdS and 3.5 eV for ZnS. 

The calculated smallest band gap energy is equal to Eg = 0 eV for CuInTe2 and AgInSe2 

crystals for both LDA and GGA methods, and corresponds metallic behavior of the material. 
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Figure 4.10. The molar mass dependence of the band gap value for I-III-VI2 crystals. 

 

Table 4.3. The scissor operator value Δg applied for correction of band gap value 

underestimation of I-III-VI2 crystals for LDA and GGA functionals. 

Crystal Δg, eV (LDA) Δg, eV (GGA) Crystal Δg, eV (LDA) Δg, eV (GGA) 

AgAlS2 1.124 1.145 CuAlS2 1.571 1.713 

AgAlSe2 1.414 1.275 CuAlSe2 1.546 1.654 

AgAlTe2 1.109 1.294 CuAlTe2 0.788 1.044 

AgGaS2 1.643 1.679 CuGaS2 1.423 1.693 

AgGaSe2 1.579 1.435 CuGaSe2 1.461 1.526 

AgGaTe2 1.017 1.177 CuGaTe2 0.664 0.928 

AgInS2 1.639 1.523 CuInS2 1.434 1.535 

AgInSe2 1.250 1.250 CuInSe2 1.000 0.988 

AgInTe2 0.961 0.984 CuInTe2 0.857 0.950 

 

 

The experimentally established values of band gap for those crystals in [175] are 

equal to 0.95 eV and 1.25 eV, being greater than the calculated ones. Such an 

underestimation of the band gap value is typical for calculations with the LDA and GGA 

functionals [65,174,176,177]. In order to overcome it, we used the scissor operator Δg, which 

shifts the conduction band to the higher energies without any modification of the calculated 

eigenfunctions. The corrected value of the band gap can be written then as follows:  

corr calc g g gE E  .    (4.4) 
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The scissor operator values needed for matching with the experimental Eg are equal  

∆g = corr calc

g gE E , and is tabulated for the titled materials in Table 4.3 for the LDA and GGA 

calculations, respectively. These values can be usual for the CP crystals [152].  

As shown in the Fig. 4.6 and 4.7 the band structure of the I-III-VI2 crystals reveals a 

significant dispersion of energy levels. The highest dispersion of band structure is observed 

for the levels calculated around the center of the Brillouin zone (to the Г point). The top of 

the valence band of I-III-VI2 crystal, located at Г point is formed by three energy levels, 

while the valence band maximum for ZB crystals is formed by three times degenerate level 

Г15. This level consists of p-states of the anion and d-orbitals of the cation. In CP crystals at 

Г-point these levels are splited so that the highest level is non-degenerate, while the two 

lower levels intersect at Г-point. This ordering of levels corresponds to the splitting of energy 

levels into two states due to the presence of the crystal field and corresponds to the 

deformation of the crystal structure c/2a ≠ 1, whereas for a structure with parameter c/2a = 

1 the threefold degeneration of the highest energy level is observed. For a few crystals 

(CuInS2, CuInSe2, CuInTe2, CuGaSe2, CuGaTe2, etc.) the top of valence band is formed by 

the almost triply degenerated level. For those materials the parameter η is equal or close to 

1, as shown when considering the structural parameters in paragraph 4.1. 

Figure 4.11 schematically shows the location of energy levels that form the edge of 

fundamental absorption for the case η ≠ 1 and η = 1. The bottom of the conduction band is 

formed by anti-binding states Г1 formed mainly with s-states of cations and s-states of 

anions. For chalcopyrite crystals, as the symmetry of the 
12

2dD  group crystal decreases, the 

degenerate Г15 level, which corresponds to the states at the top of the valence band, splits 

into the nondegenerate Г4 level and the twice degenerate Г5 state (Fig. 4.11). This splitting 

occurs due to the action of a crystal field. The magnitude of the crystal field is determined 

by the following expression: 

ΔCF = E(Г5) – E(Г4),      (4.5) 

where E(Г5) and E(Г4) are energy levels Г5 and Г1, respectively. It is assumed that the 

magnitude of the crystal field ΔCF is positive if the level of Г5 is higher than Г4 in energy, 

and vice versa. The values of the crystal field ΔCF obtained in this work and published by 

other authors are given in Table 4. 4.  
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Figure 4.11. Schematic visualization of band edges at Г point of Brilluoin zone for the zinc-

blende and chalcopyrite compounds without spin-orbit splitting of levels.  

 

According to the selection rules, which will be considered in more detail in 

paragraph 6.1, allowed in the Brillouin zone center are transitions Г4 → Г1 and Г5 → Г1, 

which correspond to electron transitions for polarization of a wave absorbed parallel and 

perpendicular to the crystallographic axis c, respectively. As can be seen from Table 4.4, the 

values of the crystal field obtained in this work agrees well with the previously published 

data, which indicates the reliability (high accuracy) of our results [1,31,33,51,53,62,168,178]  

 

Table 4.4. Crystal field energy obtained for crystals of I-III-VI2 group with GGA functional 

and literature data from [175]. 

Crystal ΔCF, eV ΔCF, eV (lit.) Crystal ΔCF, eV ΔCF, eV (lit.) 

AgAlS2 –0.262 — CuAlS2 –0.173 –0.130 

AgAlSe2 –0.248 — CuAlSe2 –0.145 –0.170 

AgAlTe2 –0.173 — CuAlTe2 –0.098 –0.130 

AgGaS2 –0.248 –0.280 CuGaS2 –0.126 –0.129 

AgGaSe2 –0.229 –0.250 CuGaSe2 –0.103 –0.139 

AgGaTe2 –0.140 — CuGaTe2 –0.042 –0.080 

AgInS2 –0.159 –0.165 CuInS2 –0.001 –0.005 

AgInSe2 –0.117 –0.120 CuInSe2 –0.285 –0.006 

AgInTe2 –0.080 — CuInTe2 –0.056 — 
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Figure 4.12. Schematic representation of the conduction bands minima for two different effective 

masses m*a) and origin of effective mass for electron and hole b). 

 

and other. As can be seen from Table 4.4 crystals AgInTe2, CuInS2, CuInSe2, CuInTe2 have 

a small value of the crystal field energy. This value is consistent with the fact that the 

parameter of tetragonal deformation goes to one. There is also agreement with the results 

presented in [29,44] obtained from self-consistent DFT calculations. 

One of the important parameters of the material that can be obtained from the band 

diagram E(k), and makes it possible to estimate the potential of the semiconductor material 

is the effective mass of charge carriers m* at the band extrema of the electronic band 

structures. The effective mass is one of the main characteristics of an electron in a solid as a 

quasiparticle. If there is a minimum or maximum of the energy E(k) at point k0, it can be 

expanded in a series in the vicinity of the point: 

0

2

0 α 0α β 0β

α,β α β

1
( ) ( ) ( ) ( ) ...

2
k k

E
E k E k k k k k

k k



      

 


.  (4.6) 

If cut the expansion at quadratic terms and take into account that at point of an extremum 

the first derivatives are equal to zero. And if assume that all components of wave vector are 

orthogonal we will get the energy of electrons in periodic structure: 

2
2

α2
α α 0

1
( )

2
k

E
E k k

k



 




.    (4.7) 

Obtained equation is very similar to the equation for free electrons 

2

( )
2

k
E k

m
 .      (4.8) 
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To bring the description of electron motion in periodic field of the crystal lattice the inverse 

effective mass tensor is introduced. 

The effective mass of the charge carriers is related to the band structure by the 

following equation 

2

2

1 1

* ij i j

d E

m dk k

 
 

 
,     (4.9) 

where m* еffective mass, - reduced Plank’s constant, i and j is the x, y, and z, and are a 

direction in the reciprocal space, En(k) is the dispersion relation for the n electronic band. 

Conducting band minimum 

2

2
0

d E

dk
 , that corresponds m* > 0 characterizes the effective 

mass of the electron. For a branch of the band structure corresponding to the valence band 

maximum 

2

2
0

d E

dk
  for which m* < 0, describes the effective mass of the hole (Fig. 4.12 a). 

In Fig. 4.12 b schematically shows the dependence of the curvature of the electronic level in 

the vicinity of the extremum. The effective mass is related to the curvature of the electronic 

level. The greater the curvature of the level, the smaller the effective mass and vice versa. In 

Fig. 4.12 showed two electronic levels which correspond to the effective masses of charge 

carriers in the crystal. Levels with greater curvature correspond 
*

1m  (shown by a solid line). 

The branch with less curvature corresponds to 
*

2m and 
* *

2 1m m . The charge effective mass 

is determined in units of electron rest mass me (is the free electron rest mass). 

In the general case, the effective mass is a symmetric tensor quantity. The right-hand 

side of Eq. 4.9 can be written as a symmetric tensor of rank 2 as follows 

2 2 2

2

2 2 2

2 2

2

2

( ) ( ) ( )

( ) ( ) ( )

( )

x x y x z

y y z

z

d E k d E k d E k

dk dk dk dk dk

d E k d E k d E k

dk dk dk dk

d E k

dk

 
 
 
 
 
 
 
 
 
 

.    (4.10) 

To obtain the effective mass of charge carriers of crystals I-III-VI2, the extremums of the 

conduction bands and the valence band were determined from Figs. 4.6 and 4.7, and 

calculated the band structure in the selected interval near the extremum of the zone in two 

directions Г – Х and Г – Z. At definite k-points along two specific symmetry axes X and Z, 



Structure, electronic and physical properties of I-III-VI2 group crystals 

113 | Page 

the E(k) diagram is fitted around the CBM and VBM with the parabolic finction. The 

effective mass was determined from the approximation of Eq. 4.11 of the corresponding 

zone near these extremes 

2
2

0 0( ) ( )
2 *

E k E k k
m

   ,    (4.11) 

where E0 is the energy of extremum, ћ is reduced Planck’s constant, k is a wave vector, k0 is 

a location of the band extremum in k-space. The calculated with LDA and GGA methods 

effective masses of charge carriers for I-III-VI2 crystal in units of me for Z – Г – X directions 

are collected in Table 4.5. Comparing the obtained effective masses, we can say that the 

effective mass of the holes mh* is greater than the effective mass of the electron me*. This 

suggests that the top of the valence band has a weaker dispersion than the bottom of the 

conduction band. It is also worth noting that the effective mass in the Г – X direction is 

greater than in the Г – Z. A number of other crystals of semiconductor and dielectric nature 

have a similar dispersion [152,171,172]. However, it should be noted that there may be 

another situation. In particular, earlier in [66] we obtained results suggesting that the 

effective mass of an electron is much larger than the effective mass of a hole. This is 

accompanied by interesting effects.  

From the analysis of Table 4.5 it can be seen that the effective mass in the Г – X 

direction is greater than in the Г – Z. This indicates that in the Г – Z direction there should 

be greater mobility of charge carriers than in the Г – X direction. Considering the 

replacement of the cationic-anionic composition in crystals of group I-III-VI2 with the 

structure of chalcopyrite, we can see the following trends. The anionic substitution S → Se 

→ Te reduces the effective mass in the Z – Г direction. For all crystals of the studied group 

there is a decrease in the effective mass at S → Se → Te. This statement is true for both the 

effective mass of electrons and the effective mass of holes. For the effective mass of holes 

mh* in both Г – Х and Г – Z directions, the absolute value of the effective mass obtained for 

the calculation with the GGA functional is greater than the obtained LDA. It should be noted 

here that the above trend is observed for all crystals except for some Te – containing for Г –  

Z direction of the Brillouin zone. For most crystals, the absolute mass of the hole is greater 

for Г – X than for Г – Z. The cationic substitution of Ag → Cu also leads to a decrease in 

the effective mass of the charge carriers. A corresponding change is observed for both the 

effective mass of the holes and the effective mass of the electrons. Despite the large number 

of theoretical works in the literature, there are only effective masses obtained for a few 

crystals. For comparison, Table 4.6 shows the effective masses of charge carriers of crystals 
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I-III-VI2 reported in the literature [106,175,179–188]. Also, it should be noted that the cited 

literature does not indicate for which direction the Brillouin zone, and often by what method 

the effective masses are obtained, which does not allow a direct comparison of our values 

with those available in the literature. 

 

Table 4.5. The calculated effective mass of charge carriers in I-III-VI2 crystals calculated 

with LDA/GGA method (in me unit) for Z – Г – X directions. 

Crystal 
mh

* me
* 

Г – Х Z – Г Г – Х Z – Г 

AgAlS2 –2.057/–3.093 –0.361/–0.362 0.263/0.250 0.231/0.219 

AgAlSe2 –0.984/–1.529 –0.159/–0.190 0.155/0.174 0.133/0.156 

AgAlTe2 –0.546/–0.692 –0.114/–0.113 0.128/0.157 0.113/0.128 

AgGaS2 –1.042/–1.621 –0.170/–0.199 0.170/0.201 0.149/0.179 

AgGaSe2 –0.775/–1.055 –0.044/–0.070 0.086/0.120 0.068/0.113 

AgGaTe2 –0.453/–0.590 –0.041/–0.030 0.066/0.093 0.054/0.066 

AgInS2 –0.838/–1.195 –0.082/–0.095 0.148/0.175 0.094/0.239 

AgInSe2 –0.721/–0.970 –1.010/–0.211 0.403/0.037 0.090/0.032 

AgInTe2 –0.435/–0.567 –0.022/–0.728 0.070/0.077 0.092/0.041 

CuAlS2 –1.145/–1.544 –0.383/–0.447 0.334/0.261 0.979/0.216 

CuAlSe2 –0.764/–1.025 –0.156/–0.182 0.146/0.164 0.132/0.139 

CuAlTe2 –0.456/–0.580 –0.126/–0.119 0.115/0.119 0.113/0.107 

CuGaS2 –0.706/–0.945 –0.174/–0.179 0.156/0.181 0.146/0.150 

CuGaSe2 –0.554/–0.754 –0.048/–0.053 0.061/0.085 0.052/0.067 

CuGaTe2 –0.365/–0.485 –0.096/–0.041 0.052/0.058 0.052/0.040 

CuInS2 –0.812/–1.025 –0.674/–1.860 0.064/0.339 0.055/0.676 

CuInSe2 –0.603/–0.886 –0.845/–1.840 0.058/0.096 0.072/0.120 

CuInTe2 –0.416/–0.540 –0.405/–0.507 0.029/0.111 0.031/0.074 

 

The effective mass of charge carriers also characterizes various electronic processes 

and is related to the carrier mobility μ, which is determined from the equation μ
*

e

m


 , 

where e is the electronic charge, τ is a scattering time introduced to account for the scattering 

of the electron by impurities and phonons. τ depends on the collisions of conduction holes 
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with phonons (τph), impurity atoms (τi), impurity atoms and grain boundaries, or any crystal 

imperfections (τGB) [189] 

1 1 1 1

τ τ τ τph i GB

   .     (4.12) 

Mobility is important for the practical application of the material in photocatalysis, 

photovoltaics, etc. Since carrier mobility is inversely proportional to the effective mass of 

charge carrier, the reduction of m* leads to an improvement in the mobility of charge carriers 

μ and as a consequence is expressed in an increase in the conductivity of the material 

following the equation 

σ μeN .     (4.13) 

Thus, we can conclude that the substitutions of Ag → Cu, Al → Ga → In, and S → Se → 

Te lead to an increase in conductivity in I-III-VI2 materials. 

 

Table 4.6. The charge carriers effective mass for electron and hole of I-III-VI2 crystals (in 

me unit) reported in the literature. 

Crystal me
* mh

* 

AgAlS2 0.0911a; 0.07b; 0.07b 5.55b; 5.62b 

AgAlSe2 — — 

AgAlTe2 — — 

AgGaS2 0.04b; 0.23c 0.94b; 0.72 c 

AgGaSe2 0.43d; 0.17 c 0.23 d; 0.73 c 

AgGaTe2 0.08e; 0.05 e 0.57 e; 0.05 e 

AgInS2 0.04b 0.89b 

AgInSe2 0.12 c 0.39 c 

AgInTe2 0.05 e; 0.04 e 0.59 e; 0.04 e 

CuAlS2 0.06b; 0.42f; 0.83 f 1.19b; 2.24 f; 3.84 f; 1.03 f; 0.09a 

CuAlSe2 0.21 f; 0.20 f; 0.16 j 1.11 f; 1.69 f; 0.53 f; 0.75 j 

CuAlTe2 0.13g; 0.36 f; 1.98 f 0.69 g; 0.44 f; 0.63 f; 0.26 f 

CuGaS2 0.13h; 0.04b; 0.26 f; 0.25 f; 0.13 c 0.69 h; 0.78b; 0.89 f; 1.29 f; 0.37 f; 0.69c 

CuGaSe2 0.15 f; 0.53 d; 0.14 c; 0.14i 0.56 f; 0.46 f; 0.25 f; 0.40 d; 1.20 c 

CuGaTe2 0.16f; 0.15 f 0.40f; 0.46 f; 0.16f 

CuInS2 0.12j; 0.03 h; 0.03b; 0.16 c 0.93 j; 1.3 g; 1.87b; 1.30 c 

CuInSe2 0.12 j; 0.087 g; 0.09 c; 0.09i 0.98 j; 0.087 g; 0.73 c 

CuInTe2 0.16k; 0.062i; 0.1 j 0.78 k; 1.28 j 

Ref. a [180]; Ref. b[181]; Ref. c[182]; Ref. d[183]; Ref. e[184]; Ref. f[185]; Ref. g[175]; Ref. 
h[106]; Ref. i[186]; Ref. j[187]; Ref. k[188]. 
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4.2.2. Density of states 

 
 

An effective way to analyze in detail the band structure of a crystal and the origin of 

electronic levels is to further calculate the total and partial density of electronic states for 

individual atoms and the orbital moments of electrons. In order to establish the genesis of 

crystal orbitals from the atomic states of the elements that are part of the crystals of group 

I-III-VI2, calculations of the total N(E) and local/partial density of states were performed. 

The DOS of a system describes the number of states per interval of energy at each energy 

level that are available to be occupied. By partial density of states is meant the density of 

states with a given symmetry of the wave function, for example Ag 3s, S 3p, In 4d, etc., 

while the local density of states is the density of states calculated for a particular type of 

atom that makes up the crystal structure. 

In this work, the density of states was calculated by a modified tetrahedra method 

[190]. The total densities of electronic states were calculated using eigenfunctions ,ψ ( )i k r  

and eigenvalues E(k) obtained from band calculations [190] 

BZ
BZ

2
( ) = δ( ( ))i

i

N E E E d





  k k .     (4.14) 

And the number of electron in the unit cell is given by 

 

( )
FE

N N E dE


  .     (4.15) 

The partial density of electronic states was calculated using the equation: 

BZ
BZ

2
( ) = δ( ( ))sl

i

i

n E Q E E d





  k k k ,    (4.16) 

where і is the number of energy zone, BZ  is the volume of first Brillouin zone, slQk
 defines  

the charge of l-type of symmetry, that contained inside the atomic sphere, which surrounds 

an atom of type s-type in the unit cell. 

Fig. 4.13 shows the total and partial density of states of the ABC2 crystals calculated 

using the GGA functional. For CuBC2 crystals where B = Al, Ga, In and C = S, Se, Te, the 

total density of state the corresponding crystals is located on the top panel of the figures. The 

figures show that the total density of states can be divided into three parts. The first part of 

the state density graph corresponds to the energy range from 0 to 15 eV. This region is 
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formed by the states of the conduction band and includes the region where the DOS intensity 

is zero (the region from 0 eV to the energy value corresponding to Eg), and the region of E 

> Eg formed by the density of states at the levels of the conduction band. The part of the 

energy range that corresponds to the density of states with E > Eg is characterized by a wide 

zone formed by a large number of overlapping peaks. This zone occupies an energy range 

from Eg to 15 eV. There are no isolated peaks in this range, in particular those with high 

intensity. This statement is valid for all crystals of the investigated group ABC2. It should be 

noted that the intensity of the DOS function of the conduction band is significantly lower 

than the peaks of the valence band, which may be due to the greater dispersion of the energy 

levels of the conduction band compared to the valence band. This statement is also in good 

agreement with the effective mass values for these compounds calculated in paragraph 4.2. 

Thus, for strongly bound valence electrons, the effective mass of charge carriers is much 

larger than the effective mass of free electrons in the conduction band. 

The valence band of crystals in the ABC2 group is formed by a group of levels ranging 

from 0 eV to –20 eV. They can be divided into two subgroups of levels. The first subgroup 

of levels forms the top of the valence band. It is formed by two intense bands with maxima 

ranging from 0 to –7 eV. There is a tendency that the anionic substitution of S → Se → Te 

leads to the convergence of two bands in crystals of the CuBC2 type. For crystals with Te, a 

fusion of these two bands is observed. For crystals containing Ag, this region is continuous 

in the range from 0 to –7 eV. The second group of levels of the valence band is formed by 

peaks near –14 eV. For crystals AAlS2, AAlSe2, AAlTe2, where A = Cu, Ag, this region is 

formed by one peak at –13 eV, while for crystals ABC2 with ions B = Ga, In there is an 

additional peak with less energy than the peak in AAlC2 crystals at –14 eV. 

For a more detailed understanding of the origin of these bands, consider the partial 

density of states for the eighteen investigated crystals of the ABC2 group depicted in 

Fig. 4.13. From the consideration of the partial density of electronic states for crystals with 

copper atoms as an element of the first group, the following can be said. For crystals of the 

CuBC2 type, as can be seen from the figure, the maximum of the valence band is formed by 

3d-states of copper atoms. These states are represented by an intense peak of 3d-electrons 

with a small contribution of 3p-, 4p- and 5p-states of the chalcogen atoms S, Se, and Te, 

respectivly. The 4s-electrons of copper atoms form a small peak at energies from –6 to –

4 eV with an intensity close to zero. The main contribution of these states is in the conduction 

band. Two peaks lying close to each other and originated from Cu 3d-states are formed by 

split d-states under the action of a tetrahedral crystal field of surrounding atoms. As a result, 
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there are two sublevels with symmetry t2 lying at higher energies and e lying below. For 

aluminum atoms, the 3s states form a low-intensity peak at about –6 eV, while the wider 

band formed by two Al peaks at energies form –5 to –2.5 eV and from –2.5 to 0 eV is formed 

by electrons weaker than 3s at 3p intensity. For Al atoms the 3s-states form the peack of low 

intensity at approximetly –6 еV, whole the whider band is frmed of two states of Al at energy 

form –5 to –2.5 еV and from –2.5 to 0 еV is originated from 3p-electrons with weaker 

intensity than 3s. For crystals with B = Ga, In, 4s- and 4p- as well as 5s- and 5p-states, 

respectively, form similar to crystals with aluminum peaks shifted by 1.5 – 2 eV in the 

direction of lower energies. It is also worth noting that in crystals with Ga and In the 

electronic configuration contains 3d- and 4d-electrons. This levels are located at the energy 

–15 eV. For the crystals containing the В = Ga, In, the 4s- and 4p- as well as 5s- and 5p- 

tates, respectively, form similar to the Al atoms peaks shifted on 1.5 – 2 еV to the lower 

energy. Also, it should be noted, that in crystals with Ga and In, the electronic configuration 

contains 3d- and 4d-electrons. This levels are located at the energy –15 eV.  

The following can be said about the states of chalcogen atoms. For CuBC2 crystals 

where B = Al, Ga, In and C = S, Se, and Te, the structure of energy levels of chalcogen 

atoms formed by electrons is quite similar. The bands formed by S 3s and Se 4s are located 

at energies of –13 eV. 

In crystals with C = Te, the peak of Te 5s-states is shifted toward higher energies and 

is approximately located at –11 eV. The states of 3p-, 4p-, and 5p-electrons for S, Se, and 

Te, respectively, form wide bands at the top of the valence band from –7.5 to 0 eV. This 

band is formed of three main peaks. The first is associated with hybridized 3s-, 4s-, and 5s- 

states of Al, Ga, In atoms, respectively. The second is the main peak of the p-states of the 

chalcogen atom. Such a peak as well as the first low-intensity is associated with overlap of 

Cu 3d-, and Cu p-electron clouds. 

The two peaks of the Ag 4d-states have similar intensities. These peaks, as in the case 

of copper atoms, are formed by the states of t2 symmetry, which lies at higher energies, and 

by the states e, which is below. In the AgBC2 series, the S → Se → Te transition transforms 

the peak corresponding to the Ag 4d-states, the band of which passes from two peak to 

single-peak at E from 0 to –5 eV. It also becomes more intense and is accompanied by a shift 

to –5 eV. This may mean an increase in the covalence of the Ag – C bond. 

Replacement of component B in the AgBC2 series, namely Al → Ga → In, leads to 

the convergence of two closely spaced bands of Ag d-states. With this substitution, in the 

case of B = Al there is a slight change in the energy levels s and p - states in AgAlX2 crystals.   
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Figure 4.13. Total and partial density of stated of ABC2 (A = Cu, Ag, B = Al, Ga, and In; C = S, Se, 

and Te) crystals calculated using GGA functional a) CuAlS2; b) CuAlSe2; c) CuAlTe2; d) CuGaS2; 

e) CuGaSe2; f) CuGaTe2; g) CuInS2; h) CuInSe2; i) CuInTe2, j) AgAlS2; k) AgAlSe2; l) AgAlTe2; m) 

AgGaS2; n) AgGaSe2; o) AgGaTe2; p) AgInS2; q) AgInSe2; r) AgInTe2. 
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There is an increase in the Al-s peak at –5 eV at S → Se → Te with its slight shift toward 

lower energies. The conduction band also shows a narrowing of the band of s-states of Al 

atoms that form the bottom of the conduction band. 

AgGaX2 crystals have a slightly different structure of N(E) spectra. Here, the states 

of Ga atoms make a significant contribution to the density of states. These atoms have a 

high-intensity band at an energy of –15 eV. An additional gallium peak appears on the 

density of state spectrum, which is very narrow and has the highest intensity. In AgGaX2 

crystals, the anionic substitution of S → Se → Te leads to a slight shift of the Ga 3d-peak 

toward lower energies of ~ 1 eV. 

In general, the density of states for X chalcogen undergoes significant changes during the 

transition from AgAlX2 → AgGaX2 → AgInX2. For the crystals AgInX2 it is observed the 

similar behgavior of N(E) for the In ions. Here, In 4d-states create a narrow peack of the 

localized electrons at –15 eV, similarely as in Ga. Substitution S → Se → Te leads to the 

shifting of the peack In-4d by 1 eV to the lover energy. 

 

 

4.2.3. Mulliken charges and chemical bonding 

 
 

The interaction between atoms in a solid is determined by a chemical bond. There are 

known to be covalent, ionic, metallic, hydrogen, and van der Waals chemical bonds. Each 

of them is characterized by strength and method of its formation. Depending on the type of 

chemical bond, different physical properties are observed in the material. Therefore, the 

study of the characteristics of chemical bonding and related parameters are important for 

finding a relationship between the structure and properties of materials. The useful 

information on chemical bonding can be extracted from the atomic charges and bond 

population analysis. Such studies can be conducted from the first principles and provide 

important information about the interaction of atoms in the material being studied on the 

basis of information about the crystal structure using appropriate developed algorithms. An 

example of such an analysis is the analysis using the Mulliken formalism [191,192]. Analysis 

of Milliken's charges (both bond population and atomic charges) is especially useful for 

evaluating the nature of the chemical bond in the materials. 
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In order to study the peculiarities of the chemical bond in compounds I-III-VI2 and 

to elucidate the effect of isomorphic substitution on the change in the nature of these bonds, 

we calculated and analyzed Mulliken charges for atoms and the bond (overlap) population. 

Mulliken overlapping population analysis was proposed by Mulliken [191]. This approach 

is representing the distribution of charge in atoms, as well as the inter-atom bonding. 

Mulliken population analysis [192], could help investigators to get information about the 

distribution of charge among the atoms in the simulated system and study the nature of 

bonding. A high value of the bond population indicates a covalent type of bonding, and a 

low value indicates an ionic nature. Positive and negative values indicate bonding and 

antibonding states, respectively. The calculation of charges is based on the method of linear 

combination of atomic orbitals (LCAO). 

Population analysis in CASTEP was performed using the Mulliken formalism [191]. 

The implementation of this method was carried out by Segall et al. [150,193]. As mentioned 

in Chapter 3, the CASTEP program uses the PW basis to calculate the band energy structure 

and other system parameters. A disadvantage of the use of a PW basis set is that, due to the 

delocalized nature of the PW states, it provides no information about the localization of the 

electrons. In contrast, the LCAO basis set can provide a natural way of specifying quantities 

such as atomic charge, bond population, charge transfer and so forth. Population analysis in 

CASTEP is performed by projecting the PW states onto a localized basis using a technique 

described by Sanchez-Portal et al. [193]. The eigenstates ψ ( )k , obtained from the PW 

calculation when sampling at a given wavevector k, are projected onto Bloch functions 

formed from a LCAO basis set ( )k . Therefore, in Mulliken analysis, [191] the Mulliken 

charge associated with a given atom A, is determined by  

on 

( ) ( ) ( )
A

k v v

k v

Q A W P k S k 


  ,   (4.17) 

where Wk are the weights associated with the calculated k-points in the Brillouin zone. The 

ˆ( ) ( ) | ( ) | ( )v vP k k k k     ( ˆ( )k is the density operator) and ( ) ( ) | ( )v vS k k k    

denote the density matrix and the overlap matrix, respectively. The Mulliken charge provides 

a means of estimating partial atomic charges, and it represents the difference between the 

gross atom population and the number of electrons on the isolated free atom, which is the 

atomic number Z. It is widely accepted that the absolute magnitude of the atomic charges 

yielded by population analysis have little physical meaning, as they display a high degree of 
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sensitivity to the atomic basis set with which they were calculated [194]. However, for a 

consistent basis set, the relative values can provide us with some useful information 

[150,192]. In addition to providing an objective criterion for bonding between atoms, the 

overlap population may be used to assess the covalent or ionic nature of a bond.  

We firstly performed a Mulliken population analysis of atoms for the crystals of the 

study group. The atomic populations for the I-III-VI2 compounds in units of the proton 

charge calculated using LDA and GGA functionals are collected in Table 4.7. The table 

shows that the calculated charges of atoms differ significantly from the nominal charges of 

free ions. Deviation of the effective charges from the formal ones anticipated from the 

chemical formula is another confirmation of strong hybridization effects charge transfer 

between atoms and dominating covalent character of the chemical bonding in the studied 

crystal. The table shows that the atoms of aluminum, gallium and indium for almost all 

crystals show a positive value of the charge in the structure of the crystals of the chalcopyrite 

group. The exceptions are Ga atoms in the AgGaTe2 (–0.09 for LDA), CuGaTe2 (–0.03 for 

LDA) and AgInTe2 (–0.08 for LDA) CuInTe2 (–0.12 for LDA) crystals. For AgAlC2 crystals, 

the charges of the atoms are greater than the charges of the CuAlX2 crystals. The analysis of 

the obtained results showed that in the system ABC2 for which B = Ga, In and C = S the 

charges of atoms for compounds with Ag are greater than the charges of crystals with Cu. 

At the same time, for crystals with AgBC2 where B = Ga, In, and C = Se, and Te, the charges 

for crystals with A = Ag are smaller than charges of crystals with the A = Cu. 

In both subgroups of crystals (with the A = Ag and Cu) there is a general tendency 

that for all compounds with cations B = Al, Ga, and In the Milliken atomic charges decrease 

their value for ions in the crystal structure with isomorphic anion substitution S → Se → Te. 

Also from consideration of the table it is possible to notice the following. The charge of the 

sulfur anion is negative. For Se, there is also a small negative sign close to zero. However, 

for crystals with Te, their charge is positive. 

The shortest bond lengths between the constituent atoms of I-III-VI2 compounds 

calculated using LDA and GGA functionals together with bond overlap populations are 

collected in Table 4.8. Considering the chemical bonds for eighteen crystals of group 

I-III-VI2 whose parameters are collected in the table, we can note the following. As can be 

seen from the table, the calculated bond lengths and population values for GGA and LDA 

methods are in good agreement with each other. The bond lengths calculated using the LDA 

functional are slightly shorter than obtained using the GGA. This behavior is due to the 

peculiarities of the LDA and GGA functionals, which is expressed in the overbonding of 
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atoms for LDA functional and overestimation of the bond length values for GGA functional. 

In general, for crystals of the ABC2 group, the calculated bond lengths for crystals with A = 

Ag show that the distance between the A – C atoms is greater than the distance between the 

B – C atoms. The exception to this observation is AgInSe2 crystals for which the Ag – Se 

distance is greater than the In – Se bond. And AgInTe2 for which the Ag – Te bond is larger 

than In – Te. For crystals with cation atoms A = Cu, the bond lengths between the B – C 

atoms are longer than the bonds between the A – C atoms. 

The population of chemical bonds between atoms in the structure of chalcopyrite-type 

ABC2 crystals shows that for crystals with A = Ag cations the population of B – C type 

bonds is greater than A – C bonds, for all subgroup crystals except AgInSe2 and AgInTe2 

compounds for which the chemical bond population is B – C is smaler than for A – C. In 

CuBC2 crystals, the population of B – C bonds is higher than for A – C for CuAlS2, CuAlSe2, 

and CuAlTe2. For other crystals, the population of A – C is higher than for B – C. For 

compounds such as AgGaSe2, AgGaTe2, and CuGaSe2 and CuGaTe2, the population 

populations of the B – C bonds are negative, which is associated with antibonding states. 

For a more detailed analysis of the type of chemical bond, we calculated the ionicity 

parameter of bond using the following equation [195]: 

| |

1
cP P

P
hf e




  ,    (4.18) 

where P is the overlap population of a bond, а Pc – is the overlap population of the bond in 

a pure covalent crystal of that specific structure or cluster. fh is equal to zero for a purely 

covalent bond and to unity for a purely ionic bond. Usually the bonds in different types of 

structures would have different values of Pc. The calculated value of the ionic bond for 

eighteen crystals of group I-III-VI2 is given in Table 4.8. As can be seen from the table, 

crystals of group I-III-VI2 have a covalent type of chemical bond with a high contribution of 

the ionic component. As can be seen, for most crystals of this group there is a difference 

from the ionicity of the bond for A – B and B – C by the value from 0.1 to 0.5. This difference 

may be the reason for the presence of deformation in crystals of the CP type. For crystals 

containing silver atoms in the structure, it is observed that the effect of the isomorphic 

substitution S → Se leads to an increase in the ionicity of the B – C bond and the replacement 

of Se → Te to its decrease, so that fh (AgBSe2)> fh (AgBTe2)> fh (AgBS2). At the same time, 

for the A – C bond there is a dependence that the replacement of S → Se → Te leads to a 

decrease in the value of the ionicity of the bond. For a crystal with Cu for compounds with 

B = Al, In, fh (CuBSe2)> fh (CuBTe2)> fh (CuBS2). However, for crystals with gallium, we  
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Table 4.7. Atomic populations (by Mulliken) (in units of the proton charge) of the constituent atoms 

of I-III-VI2 group crystal (GGA/LDA data). 

 

  

 Species s p d Total Charge (e) 
A

g
A

lS
2
 

Ag 0.48/0.45 0.40/0.30 9.89/9.92 10.77/10.67 0.23/0.33 

Al 0.85/0.86 1.27/1.25 0.00/0.00 2.13/2.11 0.87/0.89 

S 1.81/1.83 4.74/4.78 0.00/0.00 6.55/6.61 –0.55/–0.61 

A
g

A
lS

e 2
 

Ag 0.60/0.56 0.73/0.63 9.89/9.92 11.22/11.11 –0.22/–0.11 

Al 1.05/1.04 1.49/1.42 0.00/0.00 2.55/2.47 0.45/0.53 

Se 1.51/1.55 4.60/4.66 0.00/0.00 6.11/6.21 –0.11/–0.21 

A
g

A
lT

e 2
 

Ag 0.70/0.67 0.85/0.75 9.89/9.91 11.44/11.34 –0.44/–0.34 

Al 1.19/1.22 1.68/1.62 0.00/0.00 2.87/2.84 0.13/0.16 

Te 1.48/1.52 4.37/4.39 0.00/0.00 5.84/5.91 0.16/0.09 

A
g

G
aS

2
 

Ag 0.57/0.55 0.61/ 0.50 9.87/9.90 11.05/10.95 –0.05/0.05 

Ga 0.73/0.76 1.49/ 1.41 10.00/10.00 12.21/12.17 0.79/0.83 

S 1.82/1.84 4.55/ 4.60 0.00/0.00 6.37/6.44 –0.37/–0.44 

A
g

G
aS

e 2
 

Ag 0.64/0.60 0.75/ 0.64 9.87/9.90 11.25/11.14 –0.25/–0.14 

Ga 1.13/1.17 1.62/ 1.53 10.00/10.00 12.76/12.70 0.24/0.30 

Se 1.58/1.59 4.42/ 4.49 0.00/0.00 6.00/6.08 0.00/–0.08 

A
g

G
aT

e 2
 

Ag 0.72/0.70 0.88/0.77 9.87/9.90 11.47/11.37 –0.47/–0.37 

Ga 1.30/1.31 1.79/1.69 10.00/10.00 13.09/13.00 –0.09/0.00 

Te 1.53/1.57 4.19/4.25 0.00/0.00 5.72/5.81 0.28/0.19 

A
g

In
S

2
 

Ag 0.55/ 0.53 0.52/ 0.42 9.87/ 9.90 10.95/ 10.85 0.05/ 0.15 

In 0.91/ 0.91 1.29/ 1.22 9.99/ 9.99 12.18/ 12.13 0.82/ 0.87 

S 1.85/ 1.87 4.59/ 4.64 0.00/ 0.00 6.43/ 6.51 –0.43/–0.51 

A
g

In
S

e 2
 

Ag 0.65/ 0.62 0.74/ 0.64 9.86/ 9.89 11.26/ 11.15 –0.26/–0.15 

In 1.35/ 1.31 1.45/ 1.36 9.99/ 9.99 12.79/ 12.66 0.21/0.34 

Se 1.52/ 1.57 4.45/ 4.53 0.00/ 0.00 5.98/ 6.10 0.02/–0.10 

A
g

In
T

e 2
 

Ag 0.73/0.70 0.84/0.72 9.88/9.90 11.44/11.33 –0.44/–0.33 

In 1.49/1.48 1.60/1.51 9.99/10.00 13.08/12.98 –0.08/0.02 

Te 1.47/1.52 4.27/4.32 0.00/0.00 5.74/5.84 0.26/0.16 

C
u

A
lS

2
 

Cu 0.51/0.50 0.55/0.44 9.84/9.86 10.89/10.80 0.11/0.20 

Al 0.88/0.89 1.28/1.25 0.00/0.00 2.16/2.14 0.84/0.86 

S 1.79/1.81 4.68/4.72 0.00/0.00 6.47/6.53 –0.47/–0.53 

C
u

A
lS

e 2
 

Cu 0.65/0.62 0.87/0.77 9.85/9.86 11.37/11.25 –0.37/–0.25 

Al 1.05/1.05 1.50/1.43 0.00/0.00 2.55/2.47 0.45/0.53 

Se 1.50/1.55 4.54/4.59 0.00/0.00 6.04/6.14 –0.04/–0.14 

C
u

A
lT

e 2
 

Cu 0.74/0.72 1.02/0.91 9.86/9.87 11.62/11.50 –0.62/–0.50 

Al 1.19/1.21 1.70/1.65 0.00/0.00 2.88/2.86 0.12/0.14 

Te 1.46/1.49 4.29/4.33 0.00/0.00 5.75/5.82 0.25/0.18 

C
u

G
aS

2
 

Cu 0.61/0.60 0.75/0.66 9.82/9.83 11.18/11.09 –0.18/–0.09 

Ga 0.73/0.75 1.51/1.44 10.00/10.00 12.24/12.18 0.76/0.82 

S 1.79/1.82 4.49/4.54 0.00/0.00 6.29/6.36 –0.29/–0.36 

C
u

G
aS

e 2
 

Cu 0.68/0.66 0.90/0.79 9.82/9.83 11.40/11.28 –0.40/–0.28 

Ga 1.03/1.03 1.63/1.54 10.00/10.00 12.65/12.57 0.35/0.43 

Se 1.62/1.64 4.36/4.44 0.00/0.00 5.98/6.08 0.02/–0.08 

C
u

G
aT

e 2
 

Cu 0.76/0.76 1.07/0.96 9.83/9.84 11.66/11.56 –0.66/–0.56 

Ga 1.23/1.26 1.81/1.71 10.00/10.00 13.03/12.97 –0.03/0.03 

Te 1.53/1.55 4.13/4.18 0.00/0.00 5.66/5.74 0.34/0.26 

C
u

In
S

2
 

Cu 0.59/0.59 0.66/0.57 9.81/9.83 11.06/10.98 –0.06/0.02 

In 0.94/0.94 1.31/1.24 9.99/9.99 12.24/12.17 0.76/0.83 

S 1.82/1.84 4.53/4.58 0.00/0.00 6.35/6.43 –0.35/–0.43 

C
u

In
S

e 2
 

Cu 0.69/0.67 0.89/0.78 9.81/9.82 11.39/11.27 –0.39/–0.27 

In 1.33/1.28 1.46/1.37 9.99/9.99 12.78/12.65 0.22/0.35 

Se 1.52/1.57 4.40/4.48 0.00/0.00 5.92/6.04 0.08/–0.04 

C
u

In
T

e 2
 

Cu 0.76/0.76 1.03/0.92 9.84/9.84 11.63/11.53 –0.63/–0.53 

In 1.48/1.46 1.64/1.54 9.99/9.99 13.12/12.99 –0.12/0.01 

Te 1.42/1.49 4.20/4.25 0.00/0.00 5.62/5.74 0.38/0.26 
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Table 4.8. Lengths and overlap populations of the shortest atomic bonds, and bond ionicity of 

I-III-VI2 crystal (GGA/LDA functional). 

 Bond Population Length (Å) fi 

AgAlS2 
Al — S 0.60 / 0.59 2.24055 / 2.28092 0.487 

Ag — S 0.24 / 0.21 2.47463 / 2.57713 0.958 

AgAlSe2 
Al — Se 0.52 / 0.51 2.37811 / 2.40464 0.603 

Ag — Se 0.28 / 0.25 2.57042 / 2.66933 0.924 

AgAlTe2 
Al — Te 0.57 / 0.55 2.60997 / 2.68112 0.530 

Ag — Te 0.39 / 0.36 2.71423 / 2.80543 0.791 

AgGaS2 
Ga — S 0.46 / 0.45 2.27561 /  2.32674 0.691 

Ag — S 0.38 / 0.35 2.47019 /  2.57237 0.804 

AgGaSe2 
Ga — Se –0.37 / –0.44 2.40502 /  2.43963 0.818 

Ag — Se 0.43 / 0.41 2.56482 /  2.66808 0.734 

AgGaTe2 
Ga — Te –0.73 / –0.42 2.61736 / 2.70081 0.309 

Ag — Te 0.52 / 0.47 2.71089 / 2.81254 0.603 

AgInS2 
In — S 0.42 / 0.42 2.47354 /  2.52797 0.749 

Ag — S 0.35 / 0.32 2.48012 /  2.58714 0.844 

AgInSe2 
In — Se 0.20 / 0.19 2.60028 / 2.65252 0.982 

Ag — Se 0.38 / 0.36 2.57104 / 2.66146 0.804 

AgInTe2 
In — Te 0.32 / 0.30 2.79783 / 2.87910 0.881 

Ag — Te 0.44 / 0.41 2.72456 / 2.83327 0.720 

CuAlS2 
Al — S 0.58 / 0.57 2.24095 / 2.27988 0.515 

Cu — S 0.34 / 0.31 2.24945 / 2.32300 0.856 

CuAlSe2 
Al — Se 0.55 / 0.54 2.37979 / 2.41045 0.559 

Cu — Se 0.32 / 0.30 2.35801 / 2.41619 0.881 

CuAlTe2 
Al — Te 0.60 / 0.58 2.60917 / 2.66374 0.487 

Cu — Te 0.46 / 0.42 2.52777 / 2.61716 0.691 

CuGaS2 
Ga — S 0.42 / 0.40 2.27323 / 2.32399 0.749 

Cu — S 0.52 / 0.49 2.24025 / 2.31215 0.603 

CuGaSe2 
Ga — Se –0.63 / –0.47 2.40591 / 2.43716 0.444 

Cu — Se 0.44 / 0.45 2.34835 / 2.42173 0.720 

CuGaTe2 
Ga — Te –0.45 / –0.50 2.61192 / 2.68792 0.705 

Cu — Te 0.59 / 0.58 2.51838 / 2.60220 0.501 

CuInS2 
In — S 0.38 / 0.36 2.47463 / 2.52939 0.804 

Cu — S 0.48 / 0.45 2.25207 / 2.32944 0.662 

CuInSe2 
In — Se 0.12 / 0.11 2.59910 / 2.64321 0.999 

Cu — Se 0.46 / 0.44 2.35906 / 2.43052 0.691 

CuInTe2 
In — Te 0.28 / 0.21 2.78904 / 2.87552 0.924 

Cu — Te 0.53 / 0.51 2.52821 / 2.61658 0.588 
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obtained that fh (CuGaS2)> fh (CuBTe2)> fh (CuBSe2). Also, as expected, the ionicity of the 

bond is inversely proportional to its population. Table 4.8 showed that the compounds of the 

CP group have a mixed ion-covalent type of chemical bond with a large proportion of 

ionicity. The largest fraction of ionicity was obtained for the CuInSe2 crystal (fh = 0.999), 

which indicates an almost ionic type of bond between In and Se atoms. 

 

 

4.3. Optical properties of chalcopyrite crystals 

 
 

4.3.1. Calculation of dielectric function and related optical spectra 

 
 

The practical use of materials for building on their basis a variety of optical devices 

operating in the range of different wavelengths and, in particular, optoelectronic devices 

require a detailed study of the optical properties of materials in a wide range of spectrum. 

Such studies are extremely important for characterizing the material and determining the 

suitability or effectiveness of their use in a devices. At the same time, the study of the optical 

properties of a material is an important task for understanding the electronic structure and 

explaining other physical properties. The optical properties of materials depend on the 

interaction of electromagnetic radiation with matter. This interaction is related to the 

wavelength λ, the frequency ω of the radiation, and the properties of the material, such as 

dielectric constant ε, refractive index n, and so on. When light falls on a material, their 

interaction in the general case can be characterized into several types. It can be absorbed by 

matter, reflected, or passed through. The relative extent of absorption, transmission or 

reflection depends on the properties of the material. Such interactions of electromagnetic 

radiation with matter occur simultaneously, and the nature of these interactions indicates the 

structure of energy levels and the crystal in general. Research in the low-energy (long-

wavelength) region of the spectrum is important for the construction of various optical 

devices, such as filters, modulators, etc. The high-energy (short-wavelength) region, with 

energies larger than the band gap, which corresponds to interband electron transitions, is 

important for various processes related to light absorption. In particular, light absorption is 

important when using chalcopyrite materials in photoelectrochemistry as an absorbing layer 

in photovoltaics, which is important in the design of photocells and is currently an urgent 

task for scientists. 
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In practice, absorption spectra are often used in the study of materials to analyze the 

location of electronic levels, to study of the fundamental absorption edge [196]. For 

materials with a high light absorption coefficient, such studies cannot be performed in a wide 

range of energies, so their reflection spectra are studied. From reflection spectra after some 

processing it is possible to receive dielectric function which is connected with other optical 

functions.  

Dielectric function is the one of the main optical characteristics of a solid, which can 

express other optical properties and describe the optical response of the medium. In this 

work, we investigated the dielectric function for I-III-VI2 group crystals and other optical 

properties of the material such as refractive index n, reflection coefficient R, absorption 

coefficient α. The dielectric constant ε(ω), which by its nature is a complex function and 

contains information about the optical properties of the material. Complex frequency-

dependent dielectric function can be written as:  

ε(ω) = ε1(ω) + iε2(ω),      (4.19) 

where ε1(ω) and ε2(ω) are its real and the imaginary parts, respectively. The imaginary part 

of dielectric function ε2(ω) reflects the processes involved in light absorption. The imaginary 

part, of the complex dielectric constant ε2(ω), consists of two parts: one due to intraband 

transition caused by the incident electromagnetic wave and the other due to interband 

transition. For metals, intraband transition was considered whereas interband transition is 

for semiconducting materials. Besides, the interband transition is of two types, direct band 

and indirect band transitions. The intraband excitations are manifested at low photon 

energies. Their frequencies are described in the simplest cases by the Drude – Lorentz theory. 

Due to little contribution towards dielectric function, indirect interband transitions can be 

neglected, although it provides information regarding electron-phonon scattering. The direct 

interband transitions contributes mainly to the dielectric function (imaginary part) which can 

be found out from the momentum matrix between occupied and unoccupied wave functions. 

Given the simplification of the problem by introducing a number of approximations ε2(ω) 

can be determined based on the results of the band calculation. Such a simplification is a 

one-electron approximation for calculating the excitation energy, a dipole approximation in 

calculating the intensity of transitions, and also taking into account only direct transitions, 

ie, conserving the k-vector, transitions from occupied to virtual states. Thus, from electronic 

transitions in solids ε2(ω) can be estimated by integration of elements of dipole matrix 

operator between the filled states of valence band and empty levels of conduction band 
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  
2

2

2

, ,0

2π
ε ( ω) ψ ψ δ

Ωε

c v c v

k k k k

k v c

e
u E E E   r ,   (4.20) 

where e is the electron charge, ε0 is the dielectric permittivity of vacuum; Ω is the unit cell 

volume; ψc

k  and ψv

k  are the wave functions of the conduction band and valence band in k-

space, respectively; u is the incident photon polarization vector; r is the operator of electron 

position, and E = ℏω is the photon energy. This expression is similar to Fermi’s golden rule 

for time-dependent perturbations. The ε2(ω) can be thought of as detailing the real transitions 

between the unoccupied and occupied electronic states. The matrix elements of position and 

momentum operators are related as [197] 

1 1
ψ | | ψ ψ | | ψ ψ | | ψ

ω ω

c v c v c v

k k k k k nl kr p V
i m

  ,   (4.21) 

where p is the momentum operator, ℏω is the energy difference between occupied and 

unoccupied energy levels, m is the electron mass and Vnl is the non-local pseudopotential 

(angular momentum dependent potentials).  

The peak of the imaginary part of the dielectric function corresponds to electronic 

transitions from the valence to conduction bands, depending on the electronic transition 

energy of the conduction and valence band, i.e., the band-gap energies. The instrumental 

smearing of 0.3 eV is used to simulate the broadening effects.  

The real part of the dielectric function ε1(ℏω) is related to its imaginary part ε2(ℏω) 

by the Kramers – Kronig transform relations. Thus the real part ε1 can be obtained from the 

imaginary, calculated from Eq. 4.20. 

2
1 2 2

0

2 ω'ε ( ) ω'
ε ( ω) 1

π ω' ( ω)

t d


 
 .  (4.22) 

The quantity ε1(ω) represents how much a material becomes polarized when an electric field 

is applied due to creation of electric dipoles in the material while ε2(ω) represents absorption 

in the material. When a material is transparent ε2(ω) is zero, but becomes nonzero when 

absorption begins.  

Amorphous materials are characterized by one dielectric function in all directions of 

light wave propagation in the material. However, in crystalline materials to describe the 

properties in different directions using the dielectric constant tensor, which is a material 

tensor of 2nd rank εii. 

The materials of I-III-VI2 group belongs to the crystals of the middle category for 

which the dielectric function tensor is simplified to the following components ε11 = ε22 ≠ ε33. 
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Therefore, the dielectric constant has two independent components x = y and z. According 

to the symmetry, the CP crystals are uniaxial with the optical axis directed along the z 

direction. For the directions x and y the electric field E is perpendicular to the optical axis of 

the crystal while for z the direction is parallel and is denoted as E z and E || z respectively. 

In Fig. 4.14 the spectra of dielectric functions in the polarization light of I-III-VI2 

crystals calculated for photon energies from 0 up to 20 eV for polarization vector [100] and 

[001] are shown. We have used a 0.5 eV Gaussian smearing for all calculations. As can be 

seen from the figure, all crystals of groups I-III-VI2 have similar spectra of the real and 

imaginary parts of the dielectric function. In Fig. 4.14. the left panel corresponds to the real 

part of the dielectric function of the crystal of the investigated group of chalcopyrites. 

Accordingly, the right panel shows the imaginary parts of the complex dielectric function. 

Each figure in the upper left corner has a designation that indicates that the graph belongs to 

one of the eighteen crystals of group I-III-VI2. 

From analysis of the dielectric function spectra obtained from Eqs. 4.20 and 4.22, the 

following regularities in the spectra are observed for the investigated group of crystals. For 

the real part of the dielectric function, a smooth monotonic increase in the value of ε1(ω) was 

found in the range from 0 eV to almost 2-3 eV. In this interval it is clear that the dielectric 

function has a slight anisotropy. When the anion is replaced in the structure of S → Se → 

Te crystals, a decrease in anisotropy is observed for almost all compounds. The exceptions 

are CuInX2 crystals where X = S, Se, Te for which the replacement of sulfur atoms by heavier 

atoms leads to a slight increase in anisotropy. In the specified energy range, the dielectric 

function in the x direction is greater than in the z direction (except for the AgGaTe2 crystal 

for which ε1, x < ε1, z). As the energy of the incident photon increases, a change in the behavior 

of the dielectric function is observed. It ceases to increase monotonously and forms a series 

of peaks. The first peak, for all crystals except AgAlSe2, is the most intense and ranges from 

8 (for AgGaS2) to 18 (for CuGaTe2 [165]). After reaching its maximum, the real part of the 

dielectric function begins to decline smoothly. As ε1(ω) decreases as the photon energy 

increases. The value of ε1(ω) = 0 is observed for all crystals of I-III-VI2 group, after which 

the function becomes negative. This region has a significant anisotropy in comparison with 

the low-energy region from 0 to 3 eV. It is seen that in this energy region the dielectric 

function in the x direction has a lower intensity value than in the z direction. Near the 

minimum of the dielectric function ε1, its anisotropy also increases. After reaching the 

minimum value of the real part of the dielectric constant and the beginning of its growth, 
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there is a significant convergence of the curves of the dielectric functions for the two 

directions, which indicates a decrease in anisotropy with increasing photon energy. The 

value of the energy at which the dielectric function goes to zero is different for different 

crystals and is in the range from 5.5 to 9 eV. As can be easily seen from the figures, for 

CuBC2 crystals the energy at which ε1(ω) becomes equal to zero is almost the same as for 

AgBC2 crystals. It should be noted that there is a tendency which shows that the replacement 

of the anion S → Se → Te leads to a decrease in the energy at which the real part of the 

dielectric function will become zero. Also, the figures show that the replacement of Al → 

Ga → In cations also has a slight decrease in the transition energy to zero ε1(ω). This 

behavior of the dielectric function indicating the transparency of these compounds above the 

energy at which ε1(ω) = 0. Near 20 eV, the real part again passes the mark 0 and begins to 

grow monotonically to unity. For crystals containing tellurium atoms in their structure, the 

transition from negative to positive dielectric constant occurs at an energy of approximately 

18 eV for all ABTe2 crystals. 

The Fig. 4.14 (right panel) shows the imaginary part of the dielectric function, which 

is directly related to the absorption processes. On the spectra of the imaginary part of the 

dielectric function of crystals I-III-VI2 constructed in different crystallographic directions 

(Fig. 4.14) we see that for the first critical point of the dielectric function the fundamental 

absorption edge occurs at energies corresponding to the band gap energy in the crystal. (see 

Table 4.9.). With increasing of the energy, a typical rapid increase in ε2(ω) is observed. We 

observe a significant anisotropy of the dielectric function depending on the optical 

polarization. Previously, similar behavior of the dielectric function was obtained for CdS 

films [177] and CdSe [198] and the Ag2SiS3 crystal [152], etc. The first peak in the spectrum 

of the dielectric function corresponds to the optical transitions that form the edge of the 

fundamental absorption. These are transitions from the levels of the top of the valence band 

at the level of the bottom of the conduction band. For x polarization of incident light (E

z) the absorption corresponds to transitions between states Г5 → Г1 and for z polarization of 

light (E || z) transitions occur between states with symmetry Г4 → Г1. The peak 

corresponding to the lowest energy in the range from 0 to 5 eV can be attributed to the optical 

transitions of the electron from the band forming the top of the valence band, namely the 

p-state of the chalcogen atom (S, Se, or Te) hybridized with the d-states of Cu atoms and 

Ag, at the level of the bottom of the conduction band. They in turn are formed hybridized s- 

and p-states of cation atoms Cu / Ag and Al / Ga / In. The lowest peak can also be associated 

with d → p transitions of electrons of Cu / Ag atoms from the highest level of t2 states.   
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Figure 4.14. Dispersion of the real ε1(ω) and imaginary ε2(ω) part of dielectric function of I-III-VI2 

crystals calculated using GGA functionals. 

 

Then the peak at ε2 at higher energies corresponds to d → p transitions from Cu / Ag 

states with lower energy which corresponds to the symmetry e. At energies greater than 8-9 

eV, the dielectric function begins to gradually decrease and at energies about 20 eV becomes 

close to zero, which corresponds to the absence of absorption. 

The values of the static dielectric function for crystals of group I-III-VI2 calculated 

using LDA and GGA methods are listed in Table 4.10. In this table some optical 

characteristics of the studied group of crystals are collected, namely the static value of the 

dielectric function ε1(0), the refractive index n(0) and the birefringence Δn(0). From the 

calculated table it is seen that for static values of the real part of the dielectric function ε1 it 

is observed that for calculation with LDA functional it is greater than those obtained with 

GGA functional, except for CuGaSe2 crystal for x and z directions and for CuInS2 for z-

direction. There is a tendency to increase the value of the static dielectric function for crystals 

I-III-VI2 when replacing the anion S → Se → Te and Al → Ga → In. Moreover, anionic 

substitution leads to a faster change of ε1(0) than the replacement of cation III. The highest 

values of the static dielectric function were obtained for CuGaTe2 and CuInTe2 crystals. 
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The degree of anisotropy of optical functions was also calculated for the crystals of 

the studied group. Uniaxial anisotropy of the dielectric function of crystals I-III-VI2 can be 

calculated using the following expression 

0 0

0

ε ε
δε

ε

z x

tot


 ,      (4.23) 

where 
0ε z  and 

0ε x  are the static dielectric constants, and 
0εtot  is the total dielectric constant. 

Uniaxial anisotropy of dielectric function for crystals of the study group are collected in 

Table 4.9. 

 

Table 4.9. Uniaxial anisotropy of the dielectric function of I-III-VI2 group crystals 

calculated for LDA/GGA functional. 

Crystal δε Crystal δε 

AgAlS2 –0.01454/–0.01557 CuAlS2 –0.00438/–0.00567 

AgAlSe2 –0.01044/–0.01332 CuAlSe2 –0.00621/–0.00314 

AgAlTe2 –0.00258/–0.00361 CuAlTe2 –0.00165/–0.00082 

AgGaS2 –0.00847/–0.01053 CuGaS2 –0.0079/–0.0096 

AgGaSe2 –0.0359/–0.00688 CuGaSe2 –0.0143/–0.00247 

AgGaTe2 0.0556/0.003885 CuGaTe2 –0.00346/–0.00336 

AgInS2 0.00027/–0.00594 CuInS2 –0.03099/–0.01585 

AgInSe2 –0.00663/–0.00938 CuInSe2 –0.02411/–0.02208 

AgInTe2 –0.00399/–0.00309 CuInTe2 –0.02309/–0.02147 

 

Previously, the results of study of the dielectric functions for AgGaTe2, CuAlSe2, CuGaSe2, 

etc., crystals were reported in Refs. [34,199,200]. For the comparison of the obtained in this 

work theoretical dielectric functions with the experimental, we shown on Fig. 4.15 a) and b) 

the both set of data for AgGaTe2 crystal (experimental and calculated). As one can see, the 

obtained peack position is in good agreement with the experimental data taken from [199]. 

The obtained results show the ability of the theoretical simulations give the significant and 

credibile results that are in consistency with the experiment. 
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Figure 4.15. The real (a) and imaginary (b) parts of the dielectric functions of the AgGaTe2 

semiconductor obtained using GGA (PBE) calculations (narrow line). The bold line present 

results of ellipsometry measurements [199]. 
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Figure 4.16. The reflectance R, absorption coefficient α, refractive index n and extinction coefficient 

k of I-III-VI2 crystals calculated using the GGA functional.  
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Table 4.10. Optical parameters of I-III-VI2 crystals calculated with LDA/GGA functionals. 

Crystal ε1,x(0) ε1,z(0) nx(0) nz(0) Δn(0) 

AgAlS2 5.6998/5.2447 5.4548/5.0034 2.3875/2.2901 2.3356/2.2368 0.0519/0.0533 

AgAlSe2 6.4192/5.8414 6.2202/5.6110 2.5337/2.4169 2.4941/2.3687 0.0396/0.0482 

AgAlTe2 8.0123/7.4052 7.9504/7.3252 2.8306/2.7213 2.8197/2.7065 0.0109/0.0148 

AgGaS2 6.2852/5.7704 6.1268/5.5900 2.5071/2.4021 2.4752/2.3644 0.0319/0.0377 

AgGaSe2 7.9011/7.0796 7.8233/6.9345 2.8109/2.6588 2.7970/2.6333 0.0139/0.0255 

AgGaTe2 10.8715/10.0928 11.0539/10.2109 3.2971/3.1769 3.3249/3.1954 -0.0278/-0.0185 

AgInS2 6.6473/6.0809 6.6527/5.9731 2.5783/2.4660 2.5548/2.4440 0.0235/0.0220 

AgInSe2 9.1784/7.9076 8.9970/7.6871 3.0297/2.8121 2.9995/2.7727 0.0302/0.0394 

AgInTe2 11.0544/10.2169 10.9455/10.1224 3.3250/3.1964 3.3088/3.1819 0.0162/0.0145 

CuAlS2 5.8915/5.4740 5.8144/5.3814 2.4273/2.3396 2.4113/2.3198 0.0160/0.0198 

CuAlSe2 6.7894/6.3297 6.6636/6.2703 2.6057/2.5159 2.5815/2.5041 0.0242/0.0118 

CuAlTe2 9.3894/8.6261 9.3430/8.6048 3.0642/2.9371 3.0565/2.9334 0.0077/0.0037 

CuGaS2 7.07925/6.5998 6.9127/6.4116 2.6607/2.5690 2.6292/2.5322 0.0315/0.0368 

CuGaSe2 8.6376/8.8990 8.2722/8.8333 2.9392/2.9833 2.8761/2.9722 0.0631/0.0111 

CuGaTe2 13.5406/12.8142 13.4007/12.6856 3.6799/3.5799 3.6609/3.5617 0.0190/0.0182 

CuInS2 8.0094/7.9876 7.2872/7.6138 2.8299/2.8262 2.6995/2.7594 0.1304/0.0668 

CuInSe2 12.1127/11.2907 11.2573/10.5589 3.4803/3.3605 3.3553/3.2495 0.1250/0.1110 

CuInTe2 13.2500/12.9859 12.3528/12.1671 3.6404/3.6039 3.5148/3.4885 0.1256/0.1154 

 

As mentioned earlier, the dielectric function is related to other optical parameters of the 

crystals that can be derived from it. Thus, using Eqs. 4.24 and 4.25, we can obtain from the 

spectra of the dielectric function the values of the refractive indices n(ω) and the extinction 

coefficient k(ω) [152,172]. 
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Another parameter of the material that characterizes its optical properties is its reflection 

spectrum. The reflection coefficient R can be obtained for the normal incidence onto plate 

surface by the following equation: 
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It is known, that the absorption coefficient can be evaluated by the following relation: 

 
 2 ω ω

ω
k

c
  .     (4.27) 

Also other spectral quantities, such as the loss function L(ω), descries the energy lost by an 

electron passing through a homogeneous dielectric material, and optical conductivity σ(ω), 

not discussed in this study, can be calculated.  

In Fig. 4.16 shows the spectral dependence of the reflection spectrum R(ω) and the 

absorption coefficient α(ω) of the refractive indices n(ω) and the extinction coefficient k(ω) 

as a function of the photon energy in the spectral range from 0 to 30 eV. As can be seen from 

Fig. 4.16. the reflection spectra for crystals of the chalcopyrite group with the chemical 

formula I-III-VI2 can be described as follows. For all crystals with the cation I = Ag, the 

reflection coefficient at the energy of the incident photon 0 eV is in the range of 

approximately 0.18 – 0.23, and for crystals with I = Cu, the reflection coefficient is in the 

range from 0.19 to 0.26. Anion replacement has been found to have the greatest effect on 

the static reflection coefficient, which is accompanied by its increase when sulfur atoms are 

replaced by heavier chalcogen ions. 

The increase in photon energy is accompanied by an increase in the reflection 

coefficient R. This gradual increase for crystals with silver atoms continues the value of R = 

0.5, followed by a slight decrease in the reflection coefficient to 0.45. With a slight increase 

in energy, there is a clearly defined peak at 18 – 20 eV, which reaches a value of the reflection 

coefficient of about R = 0.6. This is followed by a sharp decrease in the reflection coefficient, 

which leads to zero. The situation is similar for crystals with copper atoms. However, for the 

compounds CuInS2 and CuInSe2 after reaching the peak value of the reflection coefficient R 

= 0.5 at an energy of 12 eV, a gradual decrease in the reflection is observed without the 

presence of a well-isolated peak at energies of 18 – 20 eV. Also, it should be noted that for 

all crystals there is a clear shift towards lower energies of the threshold value R with the 

replacement of S → Se → Te. It is also found that the reflectivity of I-III-VI2 crystals is high 

in visible and ultraviolet region up to 20 eV. 

The absorption spectra α(ω) are obtained from the dielectric function using Eq. 4.27. 

shown in Fig. 4.16. The spectral dependence α(ω) shows a weak anisotropy for the x and z 

directions, at low energies (E < 5eV) and at high energies (E > 18 eV). At an intermediate 

value of energy, the anisotropy of the absorption index is somewhat more significant. In 

general, all crystals of group I-III-VI2 showed significant absorption. The maximum 

absorption for such materials is in the range of 2.6 × 105 to 3.5 × 105 cm–1. Analysis of the 
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calculated spectral dependences of the absorption index showed that the crystals of the study 

group with copper atoms have stronger absorption than compounds with silver atoms. For 

AgBC2 crystals, where B = Al, Ga, In, the absorption index is in the range of 2.6 – 3 × 105. 

Cu-containing materials have a higher value of α than Ag-bearing (2.6 – 3.5 × 105). Also, it 

should be noted that the isomorphic replacement of the cation Al → Ga → In and the anion 

S → Se → Te reduces the absorption of chalcopyrite materials. From the above it follows 

that Cu-containing crystals as their strong absorption can be effective materials for use as an 

absorbing layer in thin-film end cells. Also, because Cu-containing materials have a higher 

absorption coefficient than Ag-containing materials, they may be better absorbent materials 

for PV. Also, in Fig. 4.16 shows the spectral dependence of the refractive indices of n(λ) 

crystals of group I-III-VI2 in the range of 300-800 nm. 

 

 

4.3.2. Calculation of LNO properties of AgGaS2 crystal 

 

 

DES -calculation  

DES model of calculations based on classical polarizability theory of optical activity 

[201] can be successfully applied to determine the parameters of electrogyration, electro-

optic and second-harmonic generation effects [202]. There are many results of validation of 

the DES approach (see e.g., [202–205]).  

According to DES [202] the virtual shift xi of electron cloud is calculated using its 

electronic polarizability α (  04πε α Loc

i ij j

j

x e E  , 
2 ε

3

Loc Ext 
  
 

E E  where e is the 

electron charge, ε0 the permittivity of free space, 0α = α 4πε  the electronic polarizability 

volume, ε' the effective relative dielectric constant, Ext
E  the external electric field). As a 

result, the main equations of DES approach are [202]: 
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Here, εij denotes relative dielectric constants, n the refractive index, λ the wavelength of 

light, aij the polarization tensor, rijk the linear electro-optic tensor of the third rank, gijk the 

electrogyration tensor, dijk the second-order nonlinear susceptibility tensor.  

 

 The electronic polarizability volumes refinement silver thiogallate of crystals 

Let us consider the results of calculations performed for AgGaS2 crystals at 

λ = 632.8 nm (the information about the absolute structural data of crystals are expressed in 

[206]). The values of the polarizability volumes are varied within a large limited range and 

chosen when best agreement between calculated and experimental mean refractive index is 

observed. It is necessary to note that silver thiogallate crystals are optically negative (Δn < 0) 

and this peculiarity is, in addition, taken in to account in our calculations (see Fig. 4.17). In 

contrast, the experimental measured optical parameters for these materials (in direction 

[010]) are [207]: ρ = 94 deg/mm (the optical rotation was measured using the high-accuracy 

universal polarimeter), no = 2.5532, ne = 2.5066, respectively.  

The following refinement values of electronic polarizability volumes are obtained: 

α'Ag = 0,313 Å3, α'Ga = 0.010 Å3, α'S = 6.333 Å3 (Fig. 4.17). The calculated values of 

refractive indices and optical rotations are: ρ11 = –131 deg/mm, ρ22 = 131 deg/mm, 

ρ33 = 0 deg/mm and no = 2,5346, ne = 2,5246. 

 

Figure 4.17. Contour plot of the calculated optical rotation (solid lines), mean refractive index 

(dashdotted lines) and linear birefringence (dotted lines) for AgGaS2 crystals (α'Ga = 0.010 Å3). 

 

It is known, that information about effective relative dielectric constant (low 

frequency dielectric constant [202,203]) is still needed for DES calculations. In our case 

there is ε' = 6 (see, e.g., [208]), respectively. Using this parameter, as well as calculated 
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polarizabilities (at λ = 632.8 nm) we obtained the next values of linear electro-optic 

coefficients (at constant strain): r41 = 2.5 pm/V, r52 = 2.5 pm/V and r63 = 3.2 pm/V (the 

contracted indices are used: 1 = 11, 2 = 22, 3 = 3, 4 = 23, etc). In contrast, components of 

the rij tensor known from the literature are r41 = 4.0 pm/V, r63 = 3.0 pm/V [209]. Good 

agreement of theoretically calculated and experimentally obtained r components is clearly 

seen. On the other hand, the calculated value of the electrogyration tensor component (at 

λ = 632.8 nm) is g41 = –0.043 pm/V (experimental value obtained at λ = 498 nm is 

2.03 pm/V [210]). 

Using the Clausius–Mossotti equation, one can estimate the wavelength dependence 

of the α' to calculate the electronic polarizability volumes for 1064 nm (as has earlier been 

done, e.g., for the SiO2 crystals in [201]). As a result, the calculated nonlinear susceptibility 

are: d36 = –38.6 pm/V (literature data 28.9 pm/V [209]). 

It is necessary to note that the calculation method based on polarizability theory of 

optical activity [201] have been applied for these materials in [207]. In contrast, the optical 

rotation and refractive indices were calculated more precisely for AgGaS2 using only the 

electronic polarizability volumes for S ions (the values of α'Ga and α'Ag were neglected) [207]. 

Nevertheless, the α'Ga and α'Ag should necessary be taken into account (see e.g., the list of 

polarizabilities in [211]) in DES model because of values of the non-linear optical 

parameters strongly depend not only from α'S but from the all α'Ag, α'Ga and α'S 

polarizabilities, respectively.  

 

 

4.4. Application of DFT + U approach for correction of d-levels position 

for Ga and In atoms 

 
 

In Fig. 4.18. the total density of electronic states for AgGaS2, AgInSe2, CuGaS2, and 

CuInSe2 crystals calculated using the GGA functional together with the superimposed curves 

of XPS spectra obtained experimentally by J. C. Rife et. al. and J.E. Jaffe et. al. [29,60] in 

the energy range from 0 to –20 eV is shown. This spectral region is of considerable interest 

because it plays a key role in the formation of chemical bonds and is responsible for most of 

the physicochemical properties of the material. The DOS curve shown in Fig. 4.18 

corresponds to the results shown in Fig. 4.13 derived from GGA functional. The figure 

shows a good coordination of the location of the electronic bands of the valence band top for 
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the four investigated crystals. The intensity distribution of the peaks of the VB region for all 

bands in the DOS spectrum is well reproduced by experimental XPS spectra obtained by 

other authors (elsewere) [29,60]. The location of the electronic levels of the experimentally 

and theoretically calculated results in the range from 0 to –14 eV shows good agreement. 

However, the bands with the lowest energy corresponding to the Ga-3d and In-4d states 

show a significant difference in location compared to the band positions obtained on the 

experiment. The position of the experimental band of d-states is at lower energies than 

obtained from theoretical calculations. Thus, the experimental band for the CuGaS2 crystal 

is at energy E = –18.54 eV, while the calculated suga has a maximum at E = –15.27 eV. 
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Figure 4.18. Calculated densities of state for AgGaS2, AgInSe2, CuGaS2, та CuInSe2 crystals 

together with the experimental XPS spectra taken from literature [29,60]. 

 

For the AgInSe2 crystal, the peak of the 4d-states of indium in the experimental XPS spectra 

is located at the energy E = –17.26 eV and the calculated energy value for this peak is E = –
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14.54 eV [60]. For the CuInSe2 crystal, the theoretical position 4d-states of In is located at 

E = –14.8 eV while the experimental spectra showed the –17.76 eV. Similarely, for AgGaS2 

crystal a theoretically obtained band for Ga-3d states at E = –14.62 eV is also shifted toward 

the higher energy compared with XPS spectra (E = –17.71 eV). 

Table 4.11 summarizes the values of the position shift of the d-levels of Ga atoms, 

and In in the AgGaS2, AgInSe2, CuGaS2, and CuInSe2 crystals. From the table it can be seen 

that for crystals with the gallium cation the level shift is greater than for crystals with indium. 

The corresponding level shift for the studied materials is in the range from 2.72 eV to 

3.27 eV. Also, for the crystals considered in this section, there is a tendency, that for crystals 

that contain copper atoms in their structure have a greater shift of these levels compared to 

Ag-containing crystals by ~ 0.18 – 0.24 eV. 

Considering this shift in levels positions, we can say that DFT does not describe well 

the d-levels for Ga and In atoms in the CP-type materials. Therefore, it is necessary to use 

the corrections that will allow to obtain the proper results of calculations that will be in better 

consistent with the experiment. 

 

Table 4.11. The energy shifting of the d-levels position for AgGaS2, AgInSe2, CuGaS2, and 

CuInSe2 crystals relative to the energy of experimental position of d-level obtained from 

XPS spectra. 

Crystal ΔE, eV 

AgGaS2 3.09 

AgInSe2 2.72 

CuGaS2 3.27 

CuInSe2 2.96 

 

It is a well-known fact that the use of DFT leads to errors that occur when using LDA 

and GGA functionals. Such methods include the use of scissor operator Δg which is used to 

increase the band gap material [150], self-interaction correction (SIC) [212,213], and 

Hubbard-U correction [214]. In particular, one of the methods that is a popular extension of 

DFT, namely DFT + U and can be used for this kind of problems related to the shift of 

electronic levels is the use of the Hubbard correction method. Hubbard's correction is a well-
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known tool used in calculations. Its advantage is that the calculated results are reliable, as its 

calculation procedure is simple, and it is less expencive. Typically, this method is used to 

study strongly correlated systems and systems with localized d- and f-electrons. Strongly 

correlated materials include, in particular, oxides of transition metals, materials in which d- 

or f-electron shells with narrow energy ranges are not completely filled. 

Anisimov et al. [215–217] introduced an orbital-dependent term known as on-site 

Coulomb repulsion energy, U into the XC term of LDA and GGA. They are now referred to 

as LDA + U or GGA + U. This approach is described by the expressed as follows 

LDA LDA[ ( )] [ ( )] [ ( )]U U dcE n E n E n E   r r r .   (4.29) 

Here, n(r) is the electronic density, ELDA is the energy obtained from conventional LDA (or 

GGA for EGGA+U) functional, EU is the Hubbard type energy, and Edc is the double-counting 

correction energy. In different programs, the Hubbard parameter can be described in 

different way. It can be consist of two parameters Coulomb energy U and the exchange 

energy J or they can be combined into a single parameter known as on-site Coulomb 

repulsion U. In this study the single on-site Coulomb repulsion U which been implemented 

in CASTEP computer code was used [150,218]. The on-site Coulomb interactions are very 

strong for localized d- and f-electrons but, in some cases, can also be important for localized 

orbitals of p-electrons [219,220]. Typically, the parameter U takes the values from 2 to 

10 eV, depending on system. 

The previously described approach was used in the study of compounds of different 

types [26,171,221]. Для кристалів ZnO incorporation of both Ud,Zn and Up,O has 

successfully reproduced correct band gap [221]. The application of Ud + Up led to the 

downward shift of the hybridized Zn 3d- and O 2p-states, to the upward shift of Zn-4s states, 

and then to the broadening of the band gap (in the range of 3.1 eV to 3.4 eV). Therefore, the 

less expansive of DFT + U (Ud + Up) method is shown to produce high accuracy results of 

electronic properties of ZnO [221].  

In order to test this approach on other semiconductor materials, we have previously 

studied MnV2O6 crystals. In this work in order to obtain the correct band gap value of 

MnV2O6, we take into account the GGA + U technique (Fig. 4.19). For Mn and V atoms, 

which has the unfilled d-shell electrons we set up the Habbard parameter equal to Ud,Mn = 

4 eV and Ud,V = 3.5 eV. As result, we obtained the band gap value 1.46 eV calculated using 

the GGA + U approach, which is in well agreement with literature [222]. 
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Figure 4.19. (a) Calculated electronic band structure using GGA+U method, (b) Partial density of 

states and (c) Total density of states (DOS) calculated using GGA+U approach and comparison of 

experimental XPS spectrum of MnV2O6 crystal. 

 

The theoretical calculation of the band structure and density of states for MnV2O6 

crystal and experimental results of XPS spectra are in excellent agreement. It confirms, that 

the performed calculations with GGA + U approach are described in correct direction of the 

system. Obtained in [171] results showed that the use of the above method is effective for 

adjusting the results of calculations to take into account the Coulomb interaction of strongly 

correlated materials and localized d-states. In view of this, we used the Hubbard correction 

to correct the alignment of the bands corresponding to the d-electrons for the crystals of the 

chalcopyrite group. 

To determine the effect of the Hubbard parameter on the positions of the electronic 

d-levels, we performed a series of calculations with different values of the parameter U. In 

Fig. 4.20. (a) the results of calculations of the total density of electronic states for the CuGaS2 

crystal are given. This figure shows a set of DOS curves corresponding to different values 

of the parameter U from 0 to 8 eV. As the figure shows, the application of the Hubbard 

parameter to a CuGaS2 crystal leads to a slight change in the density of states in the region 

of the valence band top. There is a slight effect of the parameter U on the intensity of the 
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band that forms the top of the valence band and its shift to the region of lower energies. This 

behavior is manifested when using the parameter U = 2 eV. Further increase of this 

parameter does not lead to changes in the density of electronic states up to U = 8 eV. The 

figure shows that with increasing value of the Hubbard parameter, the low-energy peak 

corresponding to the Ga 3d-states of the CuGaS2 crystal shifts monotonically toward lower 

energies. Such a shift leads to improved theoretical results. Figure 4.20 (b) shows the 

dependence of the position of the Ga 3d-band depending on the value of the Hubbard 

parameter used for these calculations. As can be seen from Figures 4.20  (a) and (b), the 

position of the band shifts monotonically toward lower energies with increasing parameter 

U. Using Ud, Ga = 8.10 eV leads to the combination of the calculated peak with the 

experimental peak of the XPS spectra [60]. 

In Fig. 4.20 (c) shows calculated DOS for AgInSe2 crystal. The black line 

corresponds to the calculation without the corrections (U = 0). The application of the 

correction to the 4d-states of indium atoms leads to a slight shift of the most intense peak of 

the valence band peak. A further increase in the value of Ud,In does not affect on any of the 

bands in the DOS spectrum except the 4d-levels of indium atoms. There is also a tendency 

to shift the position of d-levels of indium with increasing value of the correction towards 

lower energies. This dependence also has a linear form, as for the CuGaS2 crystal (see 

Fig. 4.4 (d). For the AgInSe2 crystal, the application of the correction Ud,In = 5.72 eV leads 

to a shift of the level to the value of energy –17.26 eV, which corresponds to the experiment 

[29,60]. Figure 4.20 (e) and (f) illustrate the effect of the Hubbard parameter on the electronic 

structure of CuInSe2 crystal. The nature of the change in the electronic structure for this 

crystal corresponds to the behavior of the AgInSe2 crystal. From the figures it can be seen 

that for CuInSe2 crystal 4d indium level is shifted to the value –17.76 eV (experimental 

position taken from [60]) at energies Ud,In = 6.92eV. Finally, on the Fig. 4.20 (g) and (h) are 

depicted the results of using the Hubbard parameter for AgGaS2 crystal. For this crystal, as 

it was mentioned before, the experimental levels of Ga 3d-electrons are located at –17.71 eV. 

This position is reached using the correction parameter Ud,Ga = 7.12 eV. For AgGaS2, 

similarely to other crystals, the structure of higher energy levels remains almst unchanged. 

The small redestrbution of the peak intensity is found for the valence band maximum. 
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Figure 4.20. Calculated density of state for AgGaS2, AgInSe2, CuGaS2, та CuInSe2 crystals with 

using different values of Hubbard parameter U, together with the experimental XPS spectra taken 

from literature [29,60]. 

 

The band positions of the In 4d- and Ga 3d-states together with the obtained U values 

for the AgGaS2, AgInSe2, CuGaS2, and CuInSe2 crystals are collected in the Table 4.12. As 

can be seen from the table, the value of the Hubbard parameter required to correct the 

interaction of strongly localized d-electrons for crystals with Ga is higher than the 

corresponding value for In. Also, it is seen that this parameter for crystals with Cu is greater 

than for crystals with Ag. Thus, the example of AgGaS2, AgInSe2, CuGaS2, CuInSe2 crystals 

shows the efficiency of using the Hubbard parameter for CP crystals in order to take into 

account the interaction of d-electrons. 

 

Table 4.12. Position of d-levels of cations Ga and In in some crystals of I-III-VI2 (AgGaS2, AgInSe2, 

CuGaS2, CuInSe2) and corresponding U parameter values.  

Crystal E, eV U, eV 

AgGaS2 –17.71 7.12 

AgInSe2 –17.26 5.72 

CuGaS2 –18.54 8.10 

CuInSe2 –17.76 6.92 
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4.5. Conclusions 

 

1. The structure of the crystal’s unit cells of I-III-VI2 group is considered. It is found that the 

structure of the crystals of the studied group optimized by the BFGS method is close to the 

experimental. The lattice parameters and, as a consequence, the volume of the unit cell differ 

slightly from the experimental values. It was found that the difference of the optimized cell 

volume is in the range of ΔV = 4.47 (for CuAlTe2) for GGA to 45.39 Å3 (for AgInTe2) for 

LDA. It is shown that using GGA functional lead to overestimated volume of the unit cell 

while for LDA functional underestimation is observed. 

2. Geometric optimization of the lattice structure for crystals with Ag showed a feature 

consisting in atypical overestimation of the optimized lattice parameter c when using the 

LDA functional for optimization. c-parameter is greater than the experimental value by 0.2 

– 1.9%, but remains smaller than the value obtained using the GGA functional. 

3. A correlation was found between the tetragonal strain parameter η and the anion 

displacement parameter u. It is shown that the anion displacement parameter in the structure 

of I-III-VI2 crystals has a linear dependence on the tetragonal deformation parameter η. It 

was found that increasing η lead to decreasing of the parameter u. This dependence is 

characterized by a strong negative correlation. 

4. It was found that for crystals of I-III-VI2 group the top of the valence band and the bottom 

of the conduction band are in the center of the Brillouin zone. Observed is the 

underestimation of the band gap width for both LDA and GGA functional in comparison 

with the experimental values. The functional dependence of the band gap Eg on the molar 

mass µ of the studied crystals was revealed. It is shown that with increasing molar mass, the 

value of the band gap decreases. Pearson's coefficient indicates a weak negative dependence 

(R = 0.64 for LDA; R = 0.66 for GGA) on the band gap, while for experimental values of 

the band gap, this dependence is stronger (R = 0.81). 

5. It is shown that the top of the valence band for crystals of I-III-VI2 group is formed by the 

levels of Г4 and Г5 symmetry split by the crystal field. The values of the crystal field energies 

obtained from the band-energy structure agree well with the literature data. The effective 

masses of charge carriers for the directions of the Brillouin zone Г – X and Г – Z are 

calculated from the curvature of the energy branches of the bottom of the conduction band 

and the top of the valence band. It is shown that mh* is greater than me*. The anionic 

substitution S → Se → Te reduces the effective mass in the Г – Z direction. Cationic 

substitution Ag → Cu leads to decrease in the effective mass of both holes and electrons. 
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6. From the calculations of total and partial density of states the detailed structure of energy 

bands in crystals is received. Analysis of the calculated state density diagrams showed that 

the top of the valence band is formed by d-states of elements of group I (Cu, Ag), which are 

split under the action of a crystal field, with a small contribution of s- and p-states of other 

elements. Energy levels at energies smaller than 10 eV are formed by d-states of elements 

of group III (Al, Ga, and In) and do not reveal splits. The chemical bonds of the crystals 

group under study were analyzed using Mulliken charges and the population of bonds 

overlap. The high degree of ionicity of the chemical bonds was additionally evaluated. 

7. A number of optical spectra for crystals of I-III-VI2 group such as dielectric function ε, 

reflection R, absorption α, refractive indices n and extinction k are calculated. It is shown 

that the dielectric function in the region of small energy values has low anisotropy and the 

replacement of S → Se → Te leads to its reduction except for CuInX2 compounds. At higher 

energies the anisotropy of optical functions increases. It is shown that crystals of this group 

have strong absorption (α lies in the range from 2.6 to 3.5 × 105 cm–1). It has been also shown 

that the crystals with copper have stronger absorption than that with silver atoms, so such 

materials are more promising for the application as absorbing layer in solar cells. 

8. The linear electro-optic, electrogyration coefficients and second-order nonlinear 

susceptibility of AgGaS2 crystals have been calculated in the frame of the DES model. While 

selecting in a relevant way the electronic polarizability volumes of the ions, we have 

achieved satisfied agreement of the calculated and experimental optical anisotropy 

parameters for the light wavelengths λ = 632.8 nm. In addition, using the dispersion of the 

electronic polarizability volumes calculated with the Lorentz – Lorenz formula, we have 

calculated the value of nonlinear susceptibility for λ = 1064 nm. 

9. It is shown that the calculations based on the pseudopotential method with using LDA and 

GGA functionals lead to a shift in the position of the localized d-orbitals to higher energy 

for I-III-VI2 crystals. On the example of AgGaS2, AgInSe2, CuGaS2, and CuInSe2 crystals, 

it is shown that the application of the Hubbard correction DFT + U can correct the 

shortcomings of this method. 
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5. ELASTIC PROPERTIES AND ACOUSTIC WAVES IN I-III-VI2 

CRYSTALS 

 
 

5.1. Elastic and acoustic properties of I-III-VI2 group crystals 

 

 

5.1.1. Prediction of the elastic properties of solids 

 

 

Study of elastic properties of materials is important from both fundamental and 

applied point of view, in particular for designing devices based on them. Elastic properties 

reflect the interatomic interactions and are related with some fundamental physical 

properties.  

The ability of a crystalline solid to change its shape under the influence of external 

load and return to its original equilibrium state (to restore its size and initial shape) after the 

cessation of this influence is called elasticity. It determines the mechanical properties of a 

solid body and is characterized by elastic modulus of that can be calculated or measured 

experimentally. The mechanical properties of materials are very important for their practical 

applications and provide crucial information about the nature of force in a solid. Also, it 

provides deep insight into the dynamical and mechanical behavior of different materials. The 

elastic constants indicate the response of the materials to an external stress and provide an 

important information regarding the bonding characteristics, anisotropy and hardness, the 

cohesion of a material, specific heat, the Debye temperature, Grüneisen parameter and 

thermal expansion, respectively. They are closely related to the long-wavelength phonon 

spectra etc. [223,224]. In particular, having data on elastic constants, we can characterize the 

ductility, stability, brittleness and stiffness of materials. In terms of crystal anisotropy 

studies, elastic properties are of special interest. 

Elastic properties as well as many other fundamental parameters of materials can be 

predicted from the ab initio calculations of total energy in the ground state. The CASTEP 

program used in this work allows for high-precision calculations of elastic constants of a 

stable crystals Cij. Also, based on these results from the elastic constants calculation the basic 

modulus of elasticity, such as the Young's modulus (E), the shear modulus (G), the 
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volumetric modulus of elasticity (B) and the Poisson's ratio (v) can be revealed. Such studies 

are important and can be used as an alternative to experimental measurements, and allow 

high-precision characterization of materials. 

 

 

a)     b) 

Figure 5.1. Determination of stress components ij and strains εij on the faces of a unit cube:  

(a) Stress notation; (b) Strain notation. 

 

The main concepts that characterize the elasticity of the crystal are stress (force acting 

per unit area) and deformation (reaction to the applied effect). The stress state at each point 

of the elastic body is described by the mechanical stress tensor σ (Fig. 5.1). In the general 

case, the stress state of the body is determined by a system of 9 components. Three of these, 

are normal and 6 are shear [148]. The tensor of mechanical stress and elastic deformations 

is a symmetric tensor of the second rank, i.e. they can be reduced to the main axes (6 

components σij and εij are enough to describe such tensors). A general view of the stress and 

strain matrices i following  

 

xx xy xz

ij yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

,  

xx xy xz

ij yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

.   (5.1) 

 

If the direction of the main axes is chosen for the coordinate axis, then the shear stress 

components will be equal to zero and 3 components will suffice. Stress and strain tensors 

are field and do not describe the properties of crystals, and therefore do not depend on their 

symmetry. They depend on the applied force and their characteristic surface is set by the 
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direction of external force. Only in the case of thermal expansion is the strain tensor 

associated with the symmetry of the crystal. According to Hooke's law, at rather low stresses 

the deformation is proportional to the magnitude of the applied stress. For anisotropic 

materials (crystals) the Hooke's law has the following form 

σij = Cijklεkl,     (5.2) 

and vice versa  

εij = Sijklσkl,     (5.3) 

where σij is mechanical stress tensor, Сijkl the elastic constants tensor, which is characterize 

the resistance of the material to elastic deformation, Sijkl is the elastic compliance that define 

how easily the material can be strained, εkl the deformation tensor. Tensor Cijkl (where i, j, k, 

l = 1, 2, 3) is the four-rank tensor which connects mechanical stress and strain contains 81 

components. As follows from the symmetry of the tensors εik and σij, the Сij tensor are 

symmetric by the first (or last) two indices. Let us introduce a two-index representation of 

the elastic stiffness tensor to be used below (Cijkl → Cvu), by exploiting Voigt’s notation. 

Using the convolution of indices 11→1, 22→2, 33→3, 23→4, 13→5, 12→6 one can obtain 

the Eq. 5.2 in the form σj = Cijεi (i, j = 1…6) [225]. As a result of using two indices, the 

tensor of the 4th rank can be written in the form of a matrix containing 36 components. 

The resulting matrix is symmetrical about the diagonal and, accordingly, a 21 of 36 

coefficients are independent. Depending on symmetry of the crystal, the number of 

independent constants decreases. Due to the symmetry of the crystal, some matrix elements 

are equal to each other, and some are fixed and equal to zero. Thus, for each symmetry of 

the crystal, matrices of elastic constants are derived which fully describe the elastic 

properties of the material belonging to this symmetry. With increasing of the symmetry to 

cubic there are only three independent elastic constants due to equality: C11 = C22 = C33; C12 

= C23 = C13; and C44 = C55 = C66 [148] (see Table 5.1). The independent coefficients of the 

elastic constants matrix for all types of symmetry are given in Table 5.1. 

Since the I-III-VI2 crystals belongs to the tetragonal class of symmetry, the equalities 

of the coefficients C22 = C11, C23 = C13, C44 = C55 are valid as a consequence of the symmetry 

of the crystal. Therefore, there are 6 independent components of the tensor (C11, C12, C13, 

C33, C44, and C66) for the crystal (see Table 5.1). Therefore, the generalized Hooke's law (Eq. 

5.2) for I-III-VI2 crystals in the crystal structure of chalcopyrite can be written as: 
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.   (5.4) 

where σ and τ are characterize the tensile and shear stresses, as well as γ and ε are tensile 

and shear deformation, respectively. Thus, the behavior of the material under the action of 

stress will be completely described by Eq. 5.4. 

 

Table 5.1. Independent elastic constants for seven types of crystal symmetry. 

Unit cell 

parameters 
Angles  Crystal type 

Number of 

component 

Independent elastic 

coefficient 

— — Isotropic 2 C11, C12 

a = b = c 
α = β = γ = 

90° 
Cubic 3 C11, C12, C44 

a = b ≠ c 
α = β = 90° 

γ = 120° 
Hexagonal 5 C11, C12, C13, C33, C44 

a = b ≠ c 
α = β = γ = 

90° 
Tetragonal 6 C11, C12, C13, C33, C44, C66 

a ≠ b ≠ c 
α = β = 90° 

γ = 120° 
Trigonal 6 C11, C12, C13, C33, C14, C44 

a ≠ b ≠ c 
α = β = γ = 

90° 
Orthorhombic 9 

C11, C22, C33, C12, C13, C23, 

C44, C55, C66 

a ≠ b ≠ c 
α = γ = 90° 

β ≠ 90° 
Monoclinic 13 

C11, C22, C33, C12, C13, C23, 

C44, C55, C66, C16, C26, C36, 

C45 

a ≠ b ≠ c 
α ≠ β ≠ γ ≠ 

90° 
Triclinic 21 

C11, C12, C13, C14, C15, C16, 

C22, C23, C24, C25, C26, C33, 

C34, C35, C36, C44, C45, C46, 

C55, C56, C66 

DFT together with the pseudopotential method allows calculations of total energy for 

any crystal structures. Thus, we can deform the obtained equilibrium structure, determine 

the total energy of the crystal, and from the obtained results to establish elastic constants. 

The elastic constants are proportional to the second-order coefficient in the polynomial 

expansion of total energy as a function of the deformation parameter δ. 

The elastic constants can be obtained by selecting the deformation applied to the 

crystal and then the calculation of the resulting pressures. The tensor of the elastic constants 
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can be defined by means of the Taylor expansion of the total energy E(V,  δ) of the studied 

system with respect to a small strain δ of the unit cell volume V [172]: 

3

0 0

1
( ,δ) ( ,0) τ ξ δ δ ξ δ ξ (δ ),

2

 
    

 
 i i i ij i i j j

i ij

E V E V V C O   (5.5) 

where E(V0, 0) is the energy of the unstrained system, V0 is the equilibrium volume, τ0 is an 

element of the stress tensor, and ξi is a Voigt index factor. Considering of no initial stress (τi 

= 0), the energy change was derived from the second derivatives of the total energy with 

respect to different combination of strains. The relationship between the strain energy (Es) 

and the elastic stiffness tensors, is 

0

1
( ,δ) δ ξ δ ξ ,

2
s ij i i j j

ij

E V V C      (5.6) 

and the elastic constant Cij can be obtained by fitting Eq. (5.6). This method of determining 

elastic constants is called the strain-stress method. As mentioned above, the strain-stress 

method is also a general approach for investigating the elastic constants of materials.  

 

Table 5.2. The lattice parameters for deformed unit cell of the tetragonal symmetry, the expression 

relating the δ and ε variables, the finite Lagrangian strain tensor (Voigt notation) and the value of the 

second derivative, (1/2V)(d2E/dε2), in terms of the elastic constants (ε being deformation coordinate 

and E the energy) [30]. 
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5.1.2. Elastic properties of I-III-VI2 group crystals 

 

For each deformation, the crystal is relaxed at the internal degrees of freedom of the 

cell atoms. Elastic constants are defined as proportional to the coefficient of the quadratic 

term in δ (in a polynomial fit of total energy as a function of strain parameter). The elastic 

constants are calculated at the optimized structures, which can be used to obtain reliable 

elastic properties of compounds. The relationship between deformations and elastic 

constants is shown in Table 5.2. For each deformation scheme, six small δ = 1×10–3 values 

of the deformation amplitude are considered and the elastic constants can be obtained 

through partial differentials of stress to strain. After calculating all the elastic constants, the 

mechanical properties of the material can be characterized. 

 

Table 5.3. Elastic stiffness constants Cij (in GPa) of I-III-VI2 group crystals calculated using 

LDA/GGA functionals.  

Crystal C11 C33 C44 C66 C12 C13 

AgAlS2 104.2/84.6 97.1/77.6 38.18/37.5 44.4/39.1 70.2/51.5 70.1/52.2 

AgAlSe2 89.0/72.6 79.8/64.1 34.4/30.3 36.0/29.9 57.2/43.3 56.9/43.0 

AgAlTe2 77.1/59.1 75.4/54.1 17.6/12.7 25.7/28.2 56.1/34.3 56.2/33.6 

AgGaS2 98.6/82.0 92.7/71.9 41.2/37.0 41.4/40.7 64.7/47.5 64.7/46.5 

AgGaSe2 88.1/63.4 79.7/65.8 31.4/30.7 32.2/29.7 56.9/34.9 55.2/40.5 

AgGaTe2 70.4/49.3 66.0/48.3 31.5/23.6 29.6/26.4 41.4/30.1 42.1/28.0 

AgInS2 85.4/63.6 80.8/66.3 32.6/30.2 34.9/27.8 59.4/39.9 60.7/41.6 

AgInSe2 72.7/49.4 70.3/42.6 22.4/17.8 24.7/15.6 51.6/25.8 50.9/22.7 

AgInTe2 55.2/42.2 55.6/40.4 21.6/20.1 17.5/16.1 33.9/25.5 35.8/26.2 

CuAlS2 130.0/109.9 131.5/109.4 58.8/50.8 57.9/51.5 79.1/63.2 82.2/66.6 

CuAlSe2 107.3/98.1 109.4/95.0 47.4/51.8 46.1/48.8 65.1/55.7 66.8/57.5 

CuAlTe2 87.3/72.8 86.1/69.9 38.6/33.3 37.7/33.1 50.9/40.9 51.1/41.5 

CuGaS2 132.3/107.4 134.0/106.7 60.0/51.5 59.9/50.5 79.5/60.7 80.4/61.9 

CuGaSe2 108.9/92.4 104.4/89.2 49.5/49.0 49.2/48.3 65.8/50.3 65.6/50.4 

CuGaTe2 89.2/69.3 81.3/70.3 40.4/32.3 40.5/32.6 51.6/37.7 50.4/35.6 

CuInS2 106.3/86.1 108.0/85.0 44.8/40.0 42.1/38.3 71.3/54.6 71.9/55.2 

CuInSe2 89.2/68.3 89.1/72.3 38.2/30.46 37.0/33.8 59.0/45.3 58.7/50.3 

CuInTe2 77.3/51.7 75.5/49.5 31.4/21.1 32.1/20.0 49.1/39.2 47.4/39.4 

 

When studying the selected group of crystals, calculations were performed by two 

methods that include LDA and GGA XC functionals. The calculated components of Cij 
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tensor using LDA and GGA functionals for the I-III-VI2 crystals are collected in Table 5.3. 

Knowing of the elastic constants and modulus is important for technological aims, in 

manufacturing process and crystal preparation. It is known, that for practical application is 

important to obtain stable crystal structure. Verification of the mechanical stability of the 

I-III-VI2 crystal was conducted using the well-known Born criteria (Eq. 5.7). For the 

chalcopyrite crystal structure stability of tetragonal symmetry, the obtained elastic constants 

meet the requirements of mechanical stability criteria [226]: 

 

11 12 11 33 13

11 12 33 13

 0   1, 2, 3, 4, 5 and 6 ,

( ) 0;( 2 ) 0,

2[( ) 4 ] 0.

iiC i

C C C C C

C C C C

 

    

   

    (5.7) 

As one can see from the Table 5.3, calculated elastic constants Cij for the group of crystals 

I-III-VI2 completely satisfies the all criteria (5.7), indicating the mechanical stability of their 

structure. By inspection of the elastic coefficients C11, C12, C13, C33, C44, C66 one can 

conclude, that the coefficients are positive for all crystals of I-III-VI2 group. The elastic 

constants in the materials under consideration are quite small (lower than 100 GPa). In 

general, from Table 5.3 it is seen that the coefficients Cij differ from each other. As can be 

seen, the elastic constants for the calculation using the LDA method has a higher values of 

Cij than for the GGA functional. The overestimation is due to the overbinding problem of 

the LDA method, which leads to underestimation of the bond lengths in materials of different 

nature. As seen from Table 5.3, the С11 and С33 constants are the largest for the I-III-VI2 

materials, indicating the strongest resistance of the crystal to axial compression along the x 

and z directions and satisfy the relation С11 > С33. Here for the crystals AgInTe2, CuAlS2, 

CuAlSe2, CuGaS2 and CuInS2 the calculated elastic constants С11 and С33 is almost equal in 

the range of calculation error. Therefore we can assume that those coefficients, probably also 

obeys the inequality. The largest coefficient is C11 means that in the x and y directions, at the 

same pressures, the crystal is less compressed than in the z direction. The values of С11 and 

С33 differ one to another, that indicate on anisotropy of elastic properties. The data in table 

shows that the shear coefficients C12 and C13 are close to each other, showing the same 

interaction in the respective shear directions. It can be seen that the coefficients of elasticity 

satisfy the following inequality С11 > C33 > C12 > C13 > C44 > C66. 

Using the Cij values, the linear compressibility along the principal axes of the lattice 

can be evaluated. For the trigonal structure, the following relations give the linear 

compressibilities ka and kc along the a- and c-axis respectively in term of elastic constants 
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2

33 11 12 13
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( ) 2
c

С C Сc
k

c p С С С С

 
  

  
.    (5.9) 

Also, the bulk compressibility χ can be calculated as  

1
2 a c

V

V p
  


  


.     (5.10) 

The results of the calculation obtained in this work are presented in Fig. 5.2. The presented 

figure show that the calculated linear compressibility coefficients obtained with the GGA 

functional show the higher value of k than for revealed with the LDA functional. One can 

see from the figure, that the compressibility k has the clear tendency on its change. The 

sawtooth form of the compressibility change is typical for the I-III-VI2 crystals. The 

transition from CuAlS2 to AgInTe2 crystal is supported in general by the increasing of the k 

values. During the change of composition the compressibility can be divided into structural 

element substitution. The change of all Cu → Ag, Al → Ga → In, and S → Se → Te lead to 

the increasing of the compressibility. The higher influence on the compressibility has the 

anion substitution S → Se → Te leading to rapid increase in k value. The cation substitution 

can be described by the smoother change in compressibility.     
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Figure 5.2. The linear compressibility ka, kc, and k of I-III-VI2 group crystals calculated with using 

the LDA and GGA functionals. 

The elastic coefficients are related to the elastic compliance by expression Cij = Sij
–1. 

Therefore, the elastic compliance coefficients easily can be obtained from the matrix of 

elastic constants. The elastic compliance coefficients calculated of crystals under 
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investigation for both XC functionals (LDA and GGA) are collected in Table 5.4. A number 

of the parameters describing the elastic properties, such as ground state Young's modulus E, 

Poisson's ratio v, bulk B and shear G modulus also can be obtained from the elastic 

coefficients calculated for the single crystal.  

The important information that describes the elastic properties of I-III-VI2 crystals 

can also be obtained by the anisotropic Young's modulus Ei and Poisson's ratio vij [227] 

1
i

ii

E
S

 ,     (5.11) 

ij

ij

ii

S
v

S
 ,     (5.12) 

where Sij is elastic compliance coefficients, i and j = 1, 2, 3.  

The Young’s modulus E is the ratio of stress against strain and it is a measure of the 

stiffness of the material. The Young’s modulus Ex, Ey and Ez can be estimated from elastic 

compliance Sij. Becouse of the symmetry of the materials the Ex and Ey modulus are equal 

for tetragonal crystals. The calculated using Eq. 5.11 Young’s modulus for studied crystals 

are collected in Table 5.5. The values of the Young's modulus obtained from the calculations 

showed that the obtained values with the LDA functional are slightly greater than or equal 

to the GGA for both x and z components. As seen from the table, the Young’s modulus in x-

direction (Ex = Ey) is higher than in z-direction (Ez). This means that in the x- and y-directions 

the material is less tensile. Since Е is a measure of stiffness, a material with the large E is 

supposed to be stiff. The results show, that the CuGaS2 crystal is stiffer than the other 

crystals. At the same time, the crystals with the Te as cation are less stiff. 

When the beam of a certain material is stretched at both ends then there will be an 

increase in length along the longitudinal dimension. At the same time, there will be a 

decrease along the lateral dimension. The ratio of the decrease in the lateral dimension to the 

increase in longitudinal described what is known as Poisson’s ratio. The calculated Poisson’s 

ratio v in different direction are calculated using the Eq. 5.12 and collected in Table 5.5.  

Similarly, to the Young’s modulus, the Poisson’s ratio obtained with the LDA functional 

show the grater values then for GGA. As a result of the crystal symmetry the following 

components of Poisson’s ratio are equal: vxy = vyx, vzx = vzy, vxz = vyz. Generally, for the studied 

crystals the Poisson’s ratio obeys the following inequality vxz > vzx > vxy.   
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5.1.3. Calculation of polycrystalline elastic modulus 

 

The calculated parameters that characterize the elastic properties of the investigated 

group of crystals, presented in Table. 5.6 allow the analysis of not only the mechanical 

properties of crystalline materials, but also polycrystals of these compounds. Often, in 

practice it is not possible to obtain elastic modules for a single crystal material. Therefore, 

elastic modules for polycrystalline material are investigated. Considering polycrystalline 

materials as a set of single crystals with a random orientation, it is possible to calculate 

isotropic polycrystalline elastic modules. They are obtained by calculating the average of 

anisotropic elastic constants for single crystal. Compared with single crystals, the elastic 

properties of polycrystals have greater application significance. Such polycrystalline elastic 

modules include the bulk modulus B, the shear modulus G, the Young's modulus E, and the 

Poisson's ratio v. 

There are several models for determining the bulk modulus of solids: Voigt model in 

which assuming the uniform strain (index V), Reuss model assuming the uniform stress 

throught polycrystal (index R) and Hill model (index H). This approach is called Voigt – 

Reuss – Hill (VRH) approximation [228–230]. The bulk modulus B and the shear modulus 

G differ in magnitude for the Reuss and Voigt schemes. Also, the bulk modulus can be 

determined from the Birch [231] or Birch-Murnagan [232] equation of state by examining 

the dependences E(V) or V(P), respectively. The results obtained by different methods 

should give the same results for the values of the bulk modulus. 

For tetragonal crystal symmetry, the bulk modulus BVHR and the shear modulus 

GVHR can be received using the Voigt-Reuss-Hill average schemes  [228–230] 

33
11 12 13

2
2

9 2
V

C
B C C C

 
    

 
,    (5.13) 

2

R

C
B

M
 ,      (5.14) 

where 
2 2

11 12 33 13( ) 2C C C C C   , and 11 12 33 132 4M C C C C    ,  
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Since the V and R equations represent the upper and lower limits for polycrystalline modules, 

in practice the average value of these two expressions is obtained. Such an approach is called 

Hill’s formulas. The parameters obtained by Hill are defined as the arithmetic mean of the 

parameters B and G obtained by the Voigt and Reuss scheme. 

2

V R
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B B
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The Young’s E modulus and Poisson’s ratio v values for polycrystalline materials can be 

expressed in form B and G modulus. The theoretical values of the Young’s E modulus and 

Poisson’s ratio v values has been calculates from following equations 

9

(3 )

H H

H H

B G
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B G
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,    (5.19) 

3 2
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.    (5.20) 

Here, the subscripts V, R and H denote the Voigt’s, Reuss’s and Hill’s notation, respectively. 

The estimated values of the bulk modulus, shear modulus, Young’s modulus and Poisson’s 

ratio of titled compound are collected in Table 5.6. The highest calculated Young’s modulus 

value is observed for CuGaS2 crystal. For this crystal the E = 112.79 GPa (95.60 GPa) for 

LDA (GGA) functional, respectively. For the AgInTe2 crystal the lowest value of young’s 

modulus was received: 40.77 GPa for LDA functional and 34.61 GPa for GGA functional. 

The substitution of cation atom to the heavier atom S → Se → Te leads to the decreasing of 

the E value. 

Poisson’s ratio (v) defined as the ratio of transverse strain to the longitudinal strain is 

used to reflect the stability of the material against shear and provides information about the 
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nature of the bonding forces. It takes the value: 0 < v < 1/2. By using the v parameter, the 

ductility and brittleness of materials may be tested. The low value of Poisson’s ratio indicates 

a large compression of volume and when v = 0.5 no volume change occurs [233]. The bigger 

the Poisson’s ratios the better the plasticity of material. The present calculated result of the 

Poisson’s ratio shows that the I-III-VI2 group of materials is of good plasticity. The v = 0.25 

and v = 0.5 are the lower limit and upper limit for central forces in solids, respectively. The 

obtained value of Poisson’s ratio (v) for I-III-VI2 is larger than the lower limit value (v = 

0.25), which indicates that the interatomic forces of I-III-VI2 are central forces. 

The bulk modulus В is defined as a measure of how solids resistant to compression 

under the action of hydrostatic pressure.  A solid with the higher В are more incompressible. 

As seen from the table, the VHR calculated bulk moduli are lower than 100 GPa. That 

indicates the relative softness of I-III-VI2 crystal. The highest bulk modulus for the 

calculated group of crystals is equal to 83.43 GPa (65.26 GPa) for LDA and GGA functional. 

This value corresponds to the CuInS2 compound. The smallest value of bulk modulus B is 

for AgInTe2 crystal, that is equal to 41.87 GPa for LDA and 31.16 GPa for GGA 

respectively.  

Comparing the materials of the studied group with other important reference values 

such as for glass (35-50 GPa) and diamond (443 GPa), we can also say that these crystals 

are relatively soft. 

Based on the bulk and shear moduli, the characteristics of the crystal such as plasticity 

and ductility can be estimated. For this purpose, the Pugh’s criterion [234], which operate 

the BH/GH ratio in order to determine whether a material is brittle or ductile, is used. This 

relation give reference for the judgment of the ductility of material. The critical value for 

Pugh’s ratio is equal to 1.75. If the ratio is lower than the 1.75, the material is brittle 

otherwise material is ductile. For the titled group of crystals, the Pugh’s ratio BH/GH is 

calculated using two functionals (LDA and GGA) are listed in Table 5.6. The results 

received during the calculations with the LDA functional showed the larger values than with 

the GGA functional. For the studied crystals BH/GH ratio is between 4.12 (3.46) to 2.15 (1.86) 

for LDA (GGA) functional, respectively. All coefficients showed the value of B/G greater 

than the critical value 1.75. Therefore, all crystals of I-III-VI2 group are of high ductility. 

The largest value of B/G ratio was estimated for AgGaTe2 crystal (for LDA) and CuInTe2 

(for GGA). 
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Figure 5.3. Comparison between experimental and DFT calculated bulk modulus of 

I-III-VI2 chalcopyrites for LDA and GGA functionals. 

 

In order to show the deviation of theoretically calculated bulk modulus values from 

experimental for I-III-VI2 group of crystals, we plotted the dependence of calculated bulk 

modulus from the experimental on Fig. 5.3. As can be seen, the bulk modulus calculated 

with the LDA functional is slightly overestimated. At the same time, the GGA calculated 

values of B is underestimated. For two methods the calculated values show the near linear 

trend.  

An important task in studying the properties of a material is to try to relate them to 

the structure or other characteristics of the material. The study of correlations can provide 

information about the structure-property and property-property relationship. For a more 

detailed analysis of the obtained values of the modulus of elasticity, we attempted to relate 

them to the crystal structure and other physical properties. Therefore, we constructed several 

dependences of the bulk modulus of the investigated crystals on other parameters of these 

crystals. Figure 5.4 shows the dependence of the modulus of elasticity for crystals of group 

I-III-VI2 on the molar mass of crystals. In Fig. 5.4 a) is shown the results obtained when 

calculating using the LDA functional and in Fig. 5.5 b) with GGA functional. As can be seen 

from the figures, the bulk modulus tends to decrease with increasing molar mass of atoms in 

the crystal. This trend is present for both calculation methods. As can be seen, the change in 

the bulk modulus with the change in molar mass is almost linear. 
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a)      b) 

Figure 5.4.  Regression plot of (a) Bulk modulus B (GPa) versus molar mass M for I-III-VI2 

compounds for a) LDA and b) GGA calculation. 

 

All sets of crystals show the close to linear dependence. The linear regression analysis has 

been performer for B as function of molar mass M. The corresponding trend can be expressed 

by the formula B = 117.971 – 0.152 M. The calculated Pearson’s parameter is equal to R = 

–0.943. The calculated value indicates the strong negative correlation between the bulk 

modulus and molar mass. Additionally, we applied the linear regression method to two sets 

of atoms. The first one is the group of Ag bearing crystals, and second one is the Cu bearing 

compounds. For the Ag bearing crystals, the dependence is described by the following 

equations: B = 105.792 – 0.126 M, (R = –0.970) – for LDA, and B = 83.946 – 0.115 M, (R = 

–0.946) – for GGA. For the Cu bearing crystals following equations were estimated: B = 

123.088 – 0.158 M, (R = –0.972) – for LDA, and B = 102.855 – 0.140 M, (R = –0.987) – for 

GGA. By the comparison of the Pearson’s correlation parameters one can conclude, that 

B(M) dependence is stronger for two separate group of crystals (one with the Ag and other 

with the Cu ions) than when we consider a total group.  

The next considered correlation is the bulk modulus dependence from the unit cell 

volume. On the Fig. 5.5. the B(V) plot was done for a) theoretical bulk modulus values versus 

the theoretical unit cell volume calculated with the LDA and GGA functional; b) 

experimental values of bulk modulus and unit cell volume. As one can see, the LDA 

calculated values has the higher values than the GGA, resulting in the higher position of 

calculated points. Two sets of data have the linear trend with the tendency to decreasing of 

the B value with the increasing of the unit cell volume. Applying the linear regression, the 

good description by the linear function of calculated data is shown.  The Pearson’ correlation 
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coefficients estimated for the theoretically calculated bulk modulus and volume of the unit 

cell are following: R = –0.952 for LDA and R = –0.919 for GGA functional. These values 

show the strong negative correlation of bulk modulus with the V. For the experimentally 

obtained data the calculated correlation parameter R = –0.965. From the obtained parameters, 

one can conclude, that theoretically obtained results correlates in good agreement with the 

experimental data.  
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Figure 5.5. The volume dependence of bulk modulus B for LDA and GGA calculated (a) 

and experimental (b) results. 
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Figure 5.6. The density dependence of bulk modulus B for LDA and GGA calculated (a) 

and experimental (b) results. 

 

In the Fig. 5.6 the crystal density dependence of bulk modulus is plotted for the I-III-VI2 

group crystals. The left panel (Fig. 5.6 a)) corresponds to the calculated with GGA and LDA 
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functional results while right panel (Fig. 5.6 b)) represents dependence of experimental 

results taken from literature. As can be seen from the figure, for both experimental and 

calculated data the similar behavior in observed. The increasing of the crystal density lead 

to the decreasing of B. The B(ρ) dependence, similarly to B(M) and B(V), show the linear 

trend and can be described by the following equations: B(ρ) = 154.43949 – 16.1517 ρ for 

LDA functional, B(ρ) = 132.37106 – 15.118 ρ for GGA functional, and B(ρ) = 132.08937 – 

13.301 ρ for the experimental data. As can bee sin from the figures, the B(ρ) points has the 

higher deviation from the trend line compering to B(V) dependence. These results also 

confirmed through the calculation of the Pearson’s correlation parameters. For theoretical 

bulk modulus the correlation is described as R = –0.808 for GGA functional and R = –0.845 

for LDA. Obtained from the experimental data R = –0.895 show the slight stronger negative 

correlation than the for theoretical. 
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Figure 5.7. Bulk modulus as function of band gap value for LDA and GGA functionals. 

 

The last one considered in this chapter dependence of bulk modulus is the band gap 

dependence of bulk modulus – B(Eg). The experimental and theoretical dependences of B(Eg) 

is shown on the Fig. 5.7. Using the linear regression method, the calculated and experimental 

data was fitted by the linear function. As a result, the following equations was obtained: 

B(Eg) = 61.61618 + 12.22636 Eg for calculation with LDA functional;  

B(Eg) = 45.88829 + 12.05233 Eg for calculation with GGA functional;  

B(Eg) = 40.967 + 11.149 Eg for experimental results. It is easy to see, that both theoretical 

and experimental data has much higher deviation from the linear dependence. As a 

confirmation of such deviation the correlation parameters was calculated. For the LDA 

functional R = 0.549, for GGA – R = 0.531, as well as R = 0.753 for the experimental data. 
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Calculated Pearson’s correlation coefficients is lower than for relations discussed above.  

Those results indicate significantly lower correlation for B(Eg) than for B(M), B(V) and B(ρ). 

The general characteristics similar to all considered cases is that the experimental data has a 

slightly higher correlation than the theoretical data. Also, it should be mentioned that B(Eg) 

has positive correlation while for other considered dependences correlation is negative. 

 

 

5.2. Description of anisotropy of elastic properties of I-III-VI2 crystals 

 

5.2.1. Anisotropy of elastic properties of I-III-VI2 crystals 

 

As one can see from the Tables 5.3 to 5.6, the I-III-VI2 crystal possesses the 

anisotropy of mechanical properties. As mentioned in the previous paragraph, the elastic 

constants for the studied group of compounds differ from each other, which is a consequence 

of the anisotropy of this material. The anisotropy of elastic properties is one important 

physical characteristic. It provides information about the features of chemical bonding in 

different directions of the crystal. Anisotropy is also associated with the formation and 

spread of microcracks in materials [152,235]. Particularly strong anisotropy of the material 

is significant under extreme conditions, such as high pressure. The study of the anisotropy 

of crystals of compounds as a method of continuing durability and mechanical stabilization 

and plays an important role in the design of devices and is mainly responsible for the 

appearance of microcracks in materials. It can be investigated from independent elastic 

constants by calculating anisotropic factors and constants. It is associated with anisotropy 

by plastic deformation and the behavior of microcracks in material. For the description of 

elastic anisotropy, several criteria have been developed to describe it. Anisotropy can be 

described by the universal anisotropy index AU and indices that show shear and compression 

AG, AB.  

To study the anisotropy of elastic properties, we calculated a set of coefficients that 

describe the degree of anisotropy of the crystal. In particular, the following three parameters 

were calculated and used as a measure of the shear anisotropy of the I-III-VI2 crystals [236] 

(shear anisotropic factors): 
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Here А1, А2, and А3 are the shear anisotropy factors for three directions (100) (010) and (001) 

of the shear planes, respectively. For structurally isotropic materials, factors А1, А2, and А3 

are equal to one. The deviation from the unit characterizes the degree of shear anisotropy of 

the material. For tetragonal symmetry of the crystal structure, by taking into account the 

symmetric peculearities and, as a consequence, the equality of elastic constants, these 

parameters take the following form 
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The calculated values of parameters А1 and А2 are shown in Fig. 5.8.  
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Figure 5.8. Calculated shear anisotropy factors A1 and A2 for I-III-VI2 crystals with LDA 

functional. 

 

The figure shows that the results of the calculation of shear anisotropy factors A1 and 

A2 for LDA and GGA methods are similar, although there are some differences for individual 

crystals. 

The value of the coefficient A1 is within 1.64 – 2.68 for LDA and 1.32 – 3.2 for GGA 

functionals.  The A2 shear anisotropy factors 1.75 – 2.91 for LDA and 1.10 – 3.77 for GGA. 

In general, as can be seen from the figure for most crystals, the coefficient A2 is greater than 

A1. However, for few crystals AgAlS2, AgAlTe2, and AgInSe2 for LDA calculation as well 

as for AgAlS2, AgAlTe2, and AgGaTe2 crystals for GGA calculation, the A1 anisotropy 

factor is greater than the A2.  
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From the analysis of the Fig. 5.8 one can conclude, that for some crystals the A1 and 

A2 indices decreasing during the Al → Ga → In and S → Se → Te isomorphic substitution. 

There are no strict behavior for all considered crystals. 
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Figure 5.9. Calculated shear anisotropy factors A1 and A2 for I-III-VI2 crystals with GGA 

functional. 

 

The universal anisotropic index АU, as well as the percentage of anisotropy in 

compression and shear (AB and AG) were also calculated for the I-III-VI2 crystals. Another 

commonly used parameter for quantifying the anisotropy of elastic properties of materials is 

the universal anisotropy index AU, was proposed by Ranganathan and Ostoja-Starzewski 

[237]. This index shows the general (universal) measure of anisotropy and includes the 

contribution of both the shear anisotropy G and the bulk anisotropy B. The more it deviates 

from zero the more pronounced is the elastic anisotropy of the crystal. The isotropy of the 

elastic properties described by the parameter АU is represented by the 0 value, whereas the 

level of deviation from 0 means the degree of elastic anisotropy of the crystal.  The AU 

parameter can be calculated as follows 

5 6U V V

R R

G B
A

G B
   ,     (5.23) 

where BV, BR, and GV, GR are bulk and shear modulus in Voigt and Reuss approximation.  
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Other parameters for estimating the anisotropy of elastic properties are the factors of 

anisotropy of the bulk modulus AB and the factor of anisotropy of the shear modulus AG. 

Those factors can be evaluated using following equations: 

V R
B

V R

B B
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B B
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,     (5.24) 
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G G
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G G
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,     (5.25) 

where GV and GR is a shear modulus as well as BV and BR are a bulk modulus obtained using 

Voigt and Reuss scheme, respectively. In an isotropic case the Voigt and Reuss 

approximation should give the same values for B and G, respectively. Therefore, these 

indices are equal to zero. If the AB or AG anisotropy factors are equal to zero the material is 

isotropic for bulk and shear properties. If the AB and AG values equal to 1 the material is 

characterized by the maximum elastic anisotropy. Most often is used the AB and AG factors 

in percent (by multiplication of Eq. 5.24 and 5.25 by 100 %).  Similar to the universal 

anisotropy index, the maximum value of AB and AG is 100 % and the minimum is 0 %, where 

zero means isotropy and 100 % represents the maximum of anisotropy. 

On Figs. 5.10 – 5.12 is depicted calculated values of mechanical anisotropy factors 

and modulus of crystals belonging to the I-III-VI2 group. Those results are shown for both 

LDA and GGA functional. As one can see, the bulk anisotropy factors AB for all crystals is 

considerably small, indicating very low anisotropy of bulk modulus. Maximal value is 0.5 % 

AgInSe2 crystal for GGA functional. For other crystals this anisotropy factor does not exceed 

0.2 %. Such small anisotropy factor can indicate that for those crystals the spatial distribution 

of bulk modulus will have almost spherical shape.  

As one can see from Fig. 5.11, the AG factor of anisotropy, that corresponds to 

anisotropy of shear modulus G possess a significantly higher values than bulk anisotropy 

factor.  The maximal value of this factor is 18.29 % for CuInTe2 crystal. The smallest 

anisotropy is observed for AgAlTe2 and AgInSe2 crystals. 

On the Fig. 5.12 the values of universal anisotropy index for studied compounds are 

shown. As one can see from diagrams, the intensity distribution of AU values show very good 

similarity with the shear anisotropy factors. This fact is generally caused by very low values 

of AB. Therefore, bulk modulus anisotropy contribution almost does not have strong effect 

on the AU.  
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Figure 5.10. Calculated bulk anisotropy index AB (in %) calculated for I-III-VI2 group 

crystals with LDA and GGA functionals. 
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Figure 5.11. Calculated shear anisotropy index AG (in %) calculated for I-III-VI2 group 

crystals with LDA and GGA functionals. 
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Figure 5.12. Calculated universal anisotropy index AU calculated for I-III-VI2 group 

crystals with LDA and GGA functionals. 
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5.2.2. Spatial distribution of the Young’s modulus E, bulk modulus B, and shear 

modulus G 

 

In addition to the calculation of various anisotropy modules and factors, one of the 

most popular and widely used methods to show the anisotropy of a material is the 

construction of three-dimensional (3D) surfaces for the value of the studied parameter. This 

method is often used to depict piezooptical, piezoelectric, gyration surfaces, etc. It is 

typically used to show the anisotropy of mechanical properties, such as the anisotropy of the 

Young's modulus E, the bulk modulus B, the shear modulus G, the Poisson’s ratio. The 

construction of such 3D surfaces allows us to visualize the spatial distribution of the studied 

parameter, and clearly show how the elastic modules change in different directions in the 

crystal. In this section, we focus on mechanical parameters such as the Young's modulus E, 

bulk modulus B, and shear modulus G. The anisotropy for those parameters will be studied 

by the plotting of the 3D contours of mechanical moduli and planar projections for the 

studied group of chalcopyrite crystals.  

For any crystal the Young's modulus value in the special direction can be obtained 

from the Eq. 5.26 [152]  

3 3 3 3
'

1111 1 1 1 1

1 1 1 1

nmpq n m p q

n m p q

S S l l l l
   

 ,    (5.26) 

where 
nmpqS  is elastic compliance matrix elements, the l1n , l1m , l1p  and l1q directional cosines 

of the new x’ axis (or [100] direction) in the rotate coordinate system with respect to the 

original coordinates. The 
'

1111S  value is equal to E–1. The general form of the Eq. 5.26 

depends on crystal symmetry. 

The Eq. 5.26 allows to estimate the E value for any direction in the crystal. Taking 

into account the symmetry of crystal, the final equation for particular crystal’s symmetry 

class can be derivate. Clearly, the exact equation for evaluating S’1111 should be calculated 

for each crystal class, because the non-zero elements in the obtained elastic compliance 

matrix are dependent on crystal symmetry. Generally, simplified S’1111 equation for the 

tetragonal symmetry, the directional dependence of Young’s is given as: 

4 4 2 2 2 2 4 2 2

11 1 2 13 44 1 3 2 3 33 3 12 66 1 2

1
( ) (2 )( ) (2 )S l l S S l l l l S l S S l l

E
        ,  (5.27) 

where Sij are the elastic compliance constants with using short Voigt notation, l1, l2 and l3 

are directional cosines cosα, cosβ and cosγ, respectively. The angles α, β and γ are set in 
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relation to [100] [010] [001] directions. In this work, we used a spherical coordinate system. 

Therefore, under spherical coordinates, the directional cosines can be represented by l1 = 

sinθcosφ, l2 = sinθsinφ, and l3 = cosθ, where θ and φ is the polar and azimuthal angle in 

spherical coordinate system (see Fig. 5.13).  Particularely, the uniaxial Young’s modulus 

along the [100] (or [010], [001] and [110] directions are calculated by  

[100] [010]

11

1
E E

S
  ,     (5.28) 

[001]

33

1
E

S
 ,     (5.29) 

[110]

11 12 66

4

2 2
E

S S S


 
.     (5.30) 

   

a)      b) 

Figure 5.13. Coordinates system and Eulerian angles. 

 

The 3D surface obtained using the Eq. 5.27 takes a spherical shape in a case of 

isotropic elastic properties. Deviation from the spherical shape indicates the elastic 

properties anisotropy. The more the surface differs from the spherical shape, the higher 

material anisotropy is. The degree of deformation of the extent of the sphere is closely related 

to the level of anisotropy.  

The 3D surface plot of Young’s modulus for group I-III-VI2 of crystals shown in the 

Fig. 5.14. The spatial distribution of the Young’s modulus was built using the elastic 

compliance Sij constants collected in Table 5.4. As seen from the figure, Young’s modulus 

for all crystals of titled group are far from the spherical shape. This fact indicates that the 

crystals is characterized by a significant spatial anisotropy of Young’s modulus. It is shown 

that the all crystals belonging to the I-III-VI2 group have anisotropic Young’s modulus 
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owing to the deviation of elastic constants in different directions. Such has a strong 

dependence on the direction. Especially, the S-bearing crystals have more pronounced 

anisotropic Young’s modulus which are in agreement with the AU. Young’s modulus E along 

the diagonal directions is the largest so indicates that highest stiffness. The largest anisotropy 

is observed for the crystals with light anions and with the substitution S → Se → Te 

decreasing of the anisotropy of Young’s modulus is observed. Due to the symmetry of 

tetragonal crystals, the E values in [100] and [010] directions on (001) plane are exactly 

identical. Young’s modulus only [110] direction is significantly higher than [100] or [010].  

A detailed information on the anisotropy of Young’s modulus can be obtained from 

the projections on crystal plains. The Young's modulus along a particular direction can also 

be used to display the strength of bonds in the corresponding orientations. Such projections 

give more detailed information about the spatial dependence of the Young's modules than 

the construction of the 3D surfaces. 

The planar projections of Young's modules can be obtained from the Eq. (5.26). 

Therefore, representation in the crystallographic planes (100), (010), and (001) was shown. 

The equations for building of the planar projections of Young's modulus are constructed with 

following constraints: 

1) (100) set θ = π/2 and change φ. 

2) (001) set φ = π/2, and change θ. 

For the vizualization of Young’s modulus along the different orienatation the (100) 

and (001) planes projection of Young’s modulus are plotted (Fig. 5.14 b). As can be seen 

from the figure, the projections of Young's modulus show significant anisotropy. The 

projections of E in two crystallographic planes show the butterfly-shape contours. A similar 

behavior of the elastic moduli for other CP crystals (MZN2 (M = Be, Mg; Z = C, Si)) was 

found in Ref. [238]. It indicates that the Young’s modulus has distinct dependence on 

crystallographic orientation. The degree of this dependence on (001) plane is significantly 

stronger than in (100) plane.  

Planar projection in the (001) crystal plane may be less polarized in different 

directions. Mohapatra and Eckhardt [239] found that the anisotropy of elastic modules is 

mainly influenced by off-diagonal elements from the complience matrix such as C15, C25, 

C35 i C46.   

As can be seen from Fig. 5.14, the anisotropy of the crystal in the (100) plane is 

greater than in the (001) plane. This behavior is observed for both the Young's modulus and 

the bulk modulus. The obtained results for the AgGaS2 crystal using the LDA functional are  
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a)   b)    a)   b) 

AgAlS2      AgAlSe2 

 

a)   b)    a)   b) 

AgAlTe2     AgGaS2 

 

a)   b)    a)   b) 

AgGaSe2     AgGaTe2 

 

a)   b)    a)   b) 

AgInS2      AgInSe2 
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a)   b)    a)   b) 

AgInTe2     CuAlS2 

 

a)   b)    a)   b) 

CuAlSe2     CuAlTe2 

 

a)   b)    a)   b) 

CuGaS2     CuGaSe2 

 

a)   b)    a)   b) 
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CuGaTe2     CuInS2 

 

a)   b)    a)   b) 

CuInSe2     CuInTe2 

Figure 5.14. 3D surface representation of Young’s modulus (a), (100) and (001) planar projections 

of the Young’s modulus (b), of I-III-VI2 group crystals plotted for the GGA-calculated elastic 

compliance coefficients.  

 

qualitatively similar to the results obtained by the GGA method, so for brevity they are 

presented only for GGA results. 

Similarly, to Young's modulus, we constructed the spatial distribution of the bulk 

modulus for the studied group of crystals. For tetragonal crystal class, the directional 

dependence of bulk modulus (B) are given by following relation: 

2 2 2

11 12 13 1 2 13 33 3

1
( )( ) (2 )S S S l l S S l

B
      ,   (5.31) 

where Sij are the elastic compliance constants, l1, l2 and l3 are directional cosines in spherical 

coordinate system. The 3D surface obtained using the Eq. 5.31 takes a spherical shape in a 

case of isotropic elastic properties. Deviation from the spherical shape indicates the bulk 

modulus anisotropy. The three-dimensional distribution of the bulk modulus B are also 

constructed for the elastic constants Sij calculated for I-III-VI2 crystals in this work (see 

Table 5.8).  

The spatial distribution of the bulk modulus is shown in Fig. 5.15. As seen from the 

figure, the crystals of studied group are characterized by an insignificant spatial anisotropy 

of bulk modulus B. For all studied crystals the shape of the 3D surface of B is very close to 

the sphere. This fact indicates that the bulk modulus for studied group of crystals exhibits 

almost isotropic behavior. As can be seen from the figure for all the studied crystals there is 

a slight tendency to change the shape of the surface. It consists in the fact that when replacing 

S → Se → Te in crystals containing silver, the figure is stretched along the z-direction. In 
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the crystals with the copper ions, on the contrary, the sphere is compressed along the z-

direction. 

For a more detailed analysis of the change in the bulk modulus, similarly to what was 

done for Young's modulus, a projection of the B on the planes (100) and (001) are 

constructed. Figure 5.15 b shows the corresponding projections of the modulus of elasticity 

for the studied crystals of the I-III-VI2 group. 

As can be seen from Fig. 5.15, for the crystals with the cation I = Cu, the projection 

of the bulk modulus B, in general, has anisotropy. Among these materials, the CuGaTe2 

crystals have a most pronounced anisotropy. In general, crystals I-III-Te2 have a greater 

anisotropy than the crystals with the anion VI = S or Se. For all the crystals with copper, the 

following peculiarities can be distinguished. For the bulk modulus of the projection in the 

(001) plane show a circular shape, which indicates that in this plane, the module B is 

characterized by isotropic behavior for all crystals. Projection B in the (100) plane showed 

the anisotropy of the studied parameter. We can highlight the following characteristic 

feature. For crystals of CuAlS2, CuAlSe2, and CuGaS2, and CuInS2, a deviation from the 

circular shape of the projection of B modulus on the (100) plane is observed. This deviation 

has a form of stretching of the obtained contour in the direction [001]. The greatest stretching 

is observed for the CuAlS2 crystal. For CuGaSe2, CuGaTe2, and CuInTe2 crystals the 

deformation has the character of a circle compression along the polar [001] axe. For CuAlTe2 

and CuInSe2 crystals, the projections in (100) and (001) planes are almost identical. This 

indicates a high degree of isotropy of the B modulus for these two crystals. 

In comparison with crystals based on copper, the crystals with silver atoms as I-cation 

are characterized by a larger anisotropy of the bulk modulus B. As can be easily seen from 

Fig. 5.15 in the (001) plane the distribution of the value of the bulk modulus B is uniform, 

forming a projection in form of a circle. All crystals with silver atoms has this kind of 

projection in the (001) plane, which also indicates the isotropy of the properties in the [100] 

and [010] directions. Considering the projection on the (100) plane, it is easy to see that in 

the x-direction the projections for (100) and (001) planes coincide. For the projection on the 

(100) plane in the [001] direction there is a decreasing of the B value in comparison with the 

values in [100] and [010] directions. The smallest value of the anisotropy of the modulus B 

characteristic of the AgInTe2 crystal is observed in the transition from compression in the 

[001] direction of the projection in the plane (100) to its stretching, similarly to the crystals 

with copper. 
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Similar to the Young's modulus and the bulk modulus, it is useful to study the 

anisotropy of the shear modulus G. 3D construction of the spatial distribution of the shear 

modulus G can be done using the following equation: 

2 2 2 2 2 2 2 2 2 2 2 2

11 1 1 11 2 2 33 3 3 12 1 2 13 1 3 13 2 3

2 2 2 2 2 2 2 2 2 2 2 2

44 2 3 2 3 44 1 3 1 3 66 1 2 1 2

1
2 (1 ) 2 (1 ) 2 (1 ) 4 4 4

1/ 2 ( 4 ) 1/ 2 ( 4 ) 1/ 2 ( 4 )

S l l S l l S l l S l l S l l S l l
G

S l l l l S l l l l S l l l l

         

        

, (5.32) 

where Sij are the elastic compliance constants, l1, l2 and l3 are directional cosines in spherical 

coordinate system. As in the previous cases, the spherical shape of the obtained surface 

corresponds to the isotropic material with respect to the shear action, while the deviation 

serves as a measure of its anisotropy. In Figure 5.16. the constructed three-dimensional 

surfaces of the spatial distribution of the shear modulus G for all crystals of the studied group 

are shown. The corresponding construction was performed for the calculated elastic 

compliance constants Sij listed in Table 5.4 calculated using the GGA functional. The figure 

shows that the shape of the constructed surfaces of the shear modulus distribution is far from 

spherical. The obtained 3D surfaces are characterized by a flower-like shape. Considering 

the figures, we can see that the replacement of S → Se → Te, and Al → Ga → In leads to a 

more spherical shape of the spatial distribution of G. Also, the replacement of S → Se → Te 

reduces the value of the shear modulus. 

In Figure 5.16 additional projections of the shear modules on the (100), (010), and 

(001) planes are given. It is easy to see that crystals with silver are characterized by a 

significant anisotropy of the shear modulus distribution for all three projection planes. The 

similarity of the projections on the (100) and (010) planes is observed, while for Young's 

modulus E and the bulk modulus B, the projections in these planes coincide for all crystals. 

The CuInTe2 crystal has the smallest anisotropy. 

The crystals with copper is characterized by a significant anisotropy of the shear 

modulus, similar to the crystals with silver atoms. There is also a slight decrease in the 

anisotropy at the substitution S → Se → Te. It should be noted that for crystals with copper 

there is a coincidence of projections in the (100) and (010) planes. A slight deviation in 

coincidence is observed for the CuGaTe2 crystal. Also, the general feature of the spatial 

distribution of the shear modulus is that the maximum of the values corresponds to the 

directions of the axes in the crystals [100], [010], and [001]. Accordingly, the minimum 

value on the projections is characteristic of the angles multiples of θ and φ = 45o between 

the axes. This behavior indicates an inverse relationship between the Young's modulus and 

the shear modulus for crystals I-III-VI2.  
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a)   b)    a)   b) 

AgAlS2      AgAlSe2 

   

a)   b)    a)   b) 

AgAlTe2     AgGaS2 

   

a)   b)    a)   b) 

AgGaSe2     AgGaTe2 

   

a)   b)    a)   b) 

AgInS2      AgInSe2 
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a)   b)    a)   b) 

AgInTe2     CuAlS2 

   

a)   b)    a)   b) 

CuAlSe2     CuAlTe2 

   

a)   b)    a)   b) 

CuGaS2     CuGaSe2 

   

a)   b)    a)   b) 

CuGaTe2     CuInS2 
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a)   b)    a)   b) 

CuInSe2     CuInTe2 

Figure 5.15. 3D surface representation of the bulk modulus B (a), (100) and (001) planar 

projections of the bulk modulus B (b) of I-III-VI2 crystal plotted for the GGA-calculated 

elastic compliance. 

 

 

 

a)   b)    a)   b) 

AgAlS2       AgAlSe2 

 

a)   b)    a)   b) 

AgAlTe2      AgGaS2 
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a)   b)    a)   b) 

AgGaSe2      AgGaTe2 

 
a)   b)    a)   b) 

AgInS2      AgInSe2 

 
a)   b)    a)   b) 

AgInTe2      CuAlS2 

 
a)   b)    a)   b) 

CuAlSe2      CuAlTe2 
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a)   b)    a)   b) 

CuGaS2      CuGaSe2 

 

a)   b)    a)   b) 

CuGaTe2      CuInS2 

 

a)   b)    a)   b) 

CuInSe2      CuInTe2 

 

Figure 5.16. 3D surface representation of the shear modulus G (a), the (100) and (001) 

planar projections of the shear modulus (b), of I-III-VI2 crystal plotted for the GGA-

calculated elastic compliance.  
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5.2.3 Sound velocities propagation and Debye temperature in I-III-VI2 group crystals 

 

Study of the sound velocities in a crystal is an important part for asolid-state physics. 

Phonons are known to play an important role in many physical processes. Thay include 

electrical conductivity and thermal conductivity. It is known that the low thermal 

conductivities is known to be largely come from the interference between acoustic branches 

and the low-lying optical branches in rare-earth pyrochlores with a face-centered-cubic (fcc) 

crystal [240]. In a crystalline body, acoustic waves in any chosen direction have three 

vibrational modes. A one mode is longitudinal (LA) and the other two are transversal (TA). 

In an anisotropic medium there are only certain directions along which elastic waves can 

propagate in pure longitudinal and transversal modes. Experimentally acoustic methods are 

used for investigation of  propagation of the acoustic waves [148].  

It is also possible to estimate the acoustic waves propagation speed using the elastic 

constants Cij obtained from the basic DFT calculations. In case of an anisotropic medium, 

the elastic properties change depending on the direction under consideration. Thus, 

connection of elastic constants with the acoustic wave velocities is markedly complicated. 

To correlate the parameters of a plane monochromatic wave running in the direction given 

by a single vector of the wave normal n(n1, n2, n3) with the density of the crystal and its 

elasticity tensor, the following expression is used: 

2ρ i ijkl j l kv u C n n u ,    (5.33) 

where ρ is a density of medium, V is a phase velocity ot the wave, Cijkl is the elastic tensor, 

ui is the displacements of points of the medium. The convolution of the elastic tensor on the 

components of the wave normal is called the Green-Christoffel tensor and is denoted as 

Гik ijkl j lC n n .     (5.34) 

Thus, the system of equations (5.33) taking into account (5.34) can be written as 

2

11 12 13 1

2

21 22 23 2

2

31 32 33 3

(Г ρ ) Г Г

Г (Г ρ ) Г 0

Г Г (Г ρ )

v u

v u

v u

   
  

   
     

.  (5.35) 

Here in Eq. (5.35) 
2ρv is the eigenvalue of the Green-Christoffel tensor, and u is its 

eigenvector. The system (5.35) will have a solution if its determinant is equal to zero: 

2det Г ρ δ 0ij ij jv u    ,    (5.36) 

where δij is the Kronecker delta (when i = j, δij = 1 and when i ≠ j, δij = 0).  
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The chalcopyrite crystals of group I-III-VI2 are of tetragonal symmetry (a = b ≠ c, 

and α = β = γ = 90o). Therefore, using the form of matrix Cij for them the Гij components 

will take simple form: 

2 2 2

11 11 1 66 2 44 3Г С n C n C n   ; 

2 2 2

22 66 1 11 2 44 3Г С n C n C n   ; 

2 2 2

33 44 1 44 2 33 3Г С n C n C n   ; 

12 21 12 66 1 2Г Г ( )С C n n   ;          (5.37) 

13 31 13 44 1 3Г Г ( )С C n n   ; 

23 32 13 44 2 3Г Г ( )С C n n   , 

where Cij is the elastic constants, ni are directional cosines. In the general case, the roots of 

Eq. (5.35) give 3 different values of acoustic wave velocities, which will correspond to three 

mutually perpendicular vectors u1, u2, u3. (i.e. they have mutually orthogonal polarization 

vectors). 

Unlike an isotropic medium, it is not possible to separate acoustic waves in a crystal, 

in the general case, into longitudinal and transverse ones, because the directions of 

oscilation, as a rule, do not coincide with the direction of wave propagation and are not 

orthogonal to it. A wave whose oscillating displacement vector is the smallest angle with the 

direction of propagation n(n1, n2, n3) is called a quasi-longitudinal QL. The other two waves 

of the direction of oscillation in which are almost perpendicular to the direction of 

propagation n(n1, n2, n3) are quasi-longitudinal QTs, which are often further classified by the 

magnitude of the phase velocity, distinguishing fast FT and slow ST quasi-transverse waves. 

However, in crystals there are so-called special directions associated with the 

elements of symmetry. The axes of symmetry and the directions perpendicular to the planes 

of symmetry are longitudinal normals (the direction along which a purely longitudinal wave 

propagates). For axes of higher orders (3, 4, 6) the velocities of both transverse waves 

coincide and these axes are longitudinal acoustic axes. All directions lying in the plane of 

symmetry and in the planes perpendicular to the axes of symmetry of paired order (2, 4, 6) 

are transverse normals (one purely transverse wave along the direction of propagation), and 

the polarization QL and QT is geometrically indented. Also, the orientation of the 

longitudinal and transversal normals and acoustic axes may not be related to the direction of 
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high symmetry. For example, in triclinic crystals there are necessarily longitudinal normals 

and acoustic axes. 

The anisotropy of the elastic properties of crystals of tetragonal symmetry, as 

mentioned in Section 5.1, characterizes 6 independent components of the elasticity tensor. 

The solution of Eq. (5.34) and (5.35) for the vectors of the wave normal [100] [110] [001] 

of such crystals has the following form: 

direction [100]: 

1 11 /v C     – longitudinal wave; 

1 44 /tv C     – transversal wave, polarization [001]; 

2 66 /tv C     – transversal wave, polarization [010]; 

direction [110]: 

11 12 66 / 2lv C C C      – longitudinal wave; 

1 44 /tv C     – transversal wave, polarization [001];     (5.38) 

2 11 12( ) / 2tv C C    – transversal wave, polarization [1 10] ; 

direction [001]: 

1 33 /v C    – longitudinal wave; 

1 66 /tv C    – transversal wave, polarization [100]; 

1 66 /tv C    – transversal wave, polarization [010], 

here ρ is a density of the material. The density of the I-III-VI2 crystals was calculated from 

the structureal data. 

As a result of theoretical modeling, the elastic constants of crystals of group I-III-VI2 

were used to calculate the velocities of longitudinal and transversal acoustic waves in 

different crystallographic directions in an anisotropic crystalline medium. The calculation of 

the phase velocities v of acoustic vibrations was performed using a set of equations (5.38) 

obtained by solving the system of equations (5.36) for the corresponding vectors of wave 

normal. 

The results of calculation of the acoustic waves propagation speed are collected in 

Table 5.7. The calculations were performed for two types of functionals describing the 

exchange-correlation interactions (LDA and GGA). The results obtained with the LDA 

functional give values of the acoustic wave velocity greater than those obtained with the 
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GGA functional vLDA > vGGA.  This trend is observed for all directions of wave propagation 

and their polarizations. This feature is due to the difference in the coefficients of elasticity 

for these methods. As can be seen from the table, both transverse and longitudinal sound 

waves in the I-III-VI2 crystal propagate with considerably different speeds. From the table 

we also can see that for different directions of propagation of the acoustic waves, the speed 

of sound of the longitudinal wave satisfies the following inequality v[110] > v[100] > v[001]. For 

transverse waves, the equality of velocities with polarization [001] is observed when 

propagating along [110] with the speed of sound for the [001] polarization during the 

propagation along [100] direction, and the speed of sound [010] polarized wave for the [100] 

direction with the [100] = [010] polarization for the [001] propagation direction. The highest 

speed of sound propagation for crystals is observed for the direction of propagation [110] 

for longitudinal polarization [110]. The highest velocity is inherent in the CuAlS2 crystal 

which is 6855.3 m/s (6319.5 m/s) for the calculations with LDA (GGA) functional, 

respectively. In the crystals with silver, the highest speed of sound propagation is for AgAlS2 

crystals. The corresponding value is equal to 5757.3 m/s (5195.0 m/s) for the calculations 

with LDA (GGA) functional, respectively. The lowest speed of propagation of acoustic 

waves in AgInTe2 crystals, which is equal to 1331.9 m/s (1179.1 m/s) and in the CuInTe2 

crystal 1516.0 m/s (1009.4 m/s) for LDA (GGA) functional, respectively.  

In addition, for chalcopyrite crystals from the calculated data, it is possible to identify 

general patterns of changes in phase velocities when moving along the series. In particular, 

it was found that crystals in the structure of which are copper atoms have higher phase 

velocities of plane waves than crystals in which the cation is silver ions. For crystals with 

copper atoms, the phase velocity of acoustic waves for both longitudinal and transverse 

waves decreases during the replacement of the group III Al → Ga → In cation. This 

dependence is observed for all anions of group VI. When replacing the anion S → Se → Te, 

a decrease in the speed of sound is also observed. For crystals containing silver atoms, the 

speed of sound propagation decreases with increasing anion mass (S → Se → Te). The 

transition from Al → Ga → In similarly leads to a decrease in the velocity for L and T 

polarizations, similarly to crystals with Cu atoms.  

The connection between the calculated longitudinal, transverse and average sound 

velocities (Vm) for I-III-VI2 compounds shown in Fig. 5.17. In the figure 5.17. is shown the 

calculated average velocities obtained from LDA and GGA functionals. Both graphics are 

very similar. As can be seen form figures, the average value Vm in [110] direction is larger 

than in [100] and [001] directions for most of the crystals.    
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Figure 5.17. The average sound velocities vm in the [100], [110], and [001] directions of I-III-VI2 

group crystals. 

 

To estimate the anisotropy of the speed of acoustic waves in single crystals often use 

the so-called percentage anisotropy index A: 

max min

max min

100%
1

( )
2

V V
A

V V


 



,    (5.23) 

where Vmax and Vmin are the maximal and minimal values of sound speed in the single crystal, 

respectively. For any crystal from studied group of compounds the percentage anisotropy 

index was calculated using the Eq. 5.23. The values of calculated indices A for the sound 

velocity of I-III-VI2 crtystals ate collected in the Table 5.7. As can be noted, the sopund 

propagation velocity for all crystals show the significant anisotropy. For those crystals the 

percentage anisotropy index A is in the range from 71 to 105 %.   
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5.3. Calculation of Debye temperature and polycrystalline speeds of 

sound 

 

Calculations of elastic constants and elastic modulus allow to obtain such an 

important parameter in solid state physics as a Debye temperature. In solid state physics the 

Debye model provide a method for estimating the phonon contribution to the specific heat 

in a solid. Debye temperature ΘD is the temperature of highest normal mode of vibrations in 

the crystal. It can be introduced as ΘDkB = ħωD where ħ is the reduced Planck’s constant, kB 

is Boltsmann’s constant, and ωD is the maximal frequency of lattice vibration. It provides 

the understanding of the thermodynamics and elastic constants of solids and lot of the 

physical properties of solids such as melting temperature Tm, heat capacity, thermal 

expansion, elastic constants, electrical conductivity, etc., which are dependent on the Debye 

temperature. At a temperature higher than the Debye temperature (T > ΘD), the vibrational 

mode in each case is assumed to be equal to kBT energy. At (T < ΘD) vibrational modes are 

rest. Low-temperature vibrations mainly arise from acoustic vibrations. Debye temperature 

is also closely related to bond strength and thermal conductivity. Therefore, information 

about can be used to characterize the strength of covalent bonding in solids, as well as to 

estimate its thermodynamic properties. The higher is ΘD, the stronger covalent bonding in 

the material. 

From the calculated propagation velocities of longitudinal and transverse acoustic 

waves which are obtained from the calculated elastic constants and elastic modulus, we can 

calculate the Debye temperature for chalcopyrite crystals of the studied group. ΘD can be 

obtained from Navier’s equation  

1

33
ν

4π

A
D m

B

Nh n

k M

 
   

 
,    (5.40) 

where h is the Planck’s constant, kB is Boltsmann’s constant, NA is Avogadro’s number, n is 

the number of atoms in a unit cell, ρ is the density of the material, M is the mass of a unit 

cell, and vm is the averaged elastic wave velocity.  The averaged elastic wave velocity defined 

as: 

1

3

3 3

1 2 1
ν

3 ν ν
m

t l

 
     
 

  

.    (5.41) 
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The used for calculation of the averaged velocity vm transversal vt and longitudinal vl 

velocities of polycrystalline material are calculated as follows 

1

2(3 4 )
ν

3
l

B G



 
  
 

, (5.42) 

1

2

νt

G



 
  
 

. (5.43) 

where B and G are polycrystalline bulk modulus and shear modulus, respectively, ρ is the 

density of the material, vl is the longitudinal sound velocity, and vt is the transverse sound 

velocity. The calculated sound velocities vl, vt, and vm, and Debye temperature ΘD are listed 

in Table 5.8. 

As can be seen from Table 5.7, the calculated acoustic wave velocities for 

polycrystals in the investigated materials are in good agreement with the calculated and 

presented in Table 5.8 results obtained for single crystals of group I-III-VI2 given in the 

previous paragraph. 

The table shows that the Debye temperature calculated in this work using the LDA 

functional is higher than for calculations with the GGA functional. As it is easy to see, it is 

possible to allocate a trend of dependences of behavior on structure of crystals. In particular, 

the replacement of the cation of group I showed that the substitution of Cu → Ag atoms 

leads to a decrease in the Debye temperature by an average of 40-100 K. The highest value 

of the temperature is 435 K, which corresponds to the CuAlS2 crystal. The lowest value of 

ΘD among the crystals of the studied group is characteristic of the AgAlTe2 crystal which is 

equal to 181.5 K. 

The table shows that the Debye temperature calculated in this work using the LDA 

functional is higher than for calculations with the GGA functional. As it is easy to see, it is 

possible to allocate a trend of dependences of behavior ΘD on structure of crystals. In 

particular, the replacement of the cation of group I showed that the substitution of Cu → Ag 

atoms leads to a decrease in the Debye temperature by an average of 40-100 K. The highest 

value of temperature is 435 K, which corresponds to the CuAlS2 crystal. The lowest value 

of ΘD among the crystals of the studied group is characteristic of the AgAlTe2 crystal which 

is equal to 181.5 K. 
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Table 5.8. Calculated longitudinal vl, transverse vt and average sound velocities vm, (in m/s), 

crystal density ρ (in kg/m3) and Debye temperature ΘD, (in K) for I-III-VI2 group crystals.  

Crystal vl vt vm ρ ΘD ΘD (lit.) 

AgAlS2 
5438.5/ 

4942.9 

2637.6/ 

2569.9 

2963.9/ 

2875.9 
3970.23 

320.83/ 

311.29 

311a, 286a, 313a 

AgAlSe2 
4409.4/ 

3979.3 

2189.1/ 

2061.3 

2456.8/ 

2307.3 
5097.73 

254.07/ 

238.61 

241a, 210a, 237a 

AgAlTe2 
3884.5/ 

3327.5 

1663.9/ 

1627.0 

1880.3/ 

1827.5 
5522.99 

181.50/ 

176.41 

191a, 158a, 181a 

AgGaS2 
4895.2/ 

4444.5 

2445.0/ 

2386.5 

2742.9/ 

2664.8 
4709.04 

294.54/ 

286.14 

255b, 282a, 261a, 

215a, 270a, 259a, 

276a 

AgGaSe2 
4114.6/ 

3639.6 

2020.7/ 

1936.1 

2269.2/ 

2163.2 
5701.21 

232.77/ 

221.90 

150c, 210a, 225a, 

161a, 156a, 228a 

AgGaTe2 
3634.4/ 

3095.9 

1908.0/ 

1679.5 

2133.8/ 

1873.9 
6087.18 

205.51/ 

180.48 

182.4c, 172a, 

129a, 125a, 122a, 

172a  

AgInS2 
4444.2/ 

3925.8 

2108.9/ 

2031.4 

2372.5/ 

2274.1 
4926.44 

244.28/ 

234.14 

242a, 201a, 238a 

AgInSe2 
3725.8/ 

2964.4 

1701.0/ 

1590.3 

1917.2/ 

1775.9 
5792.39 

189.57/ 

175.59 

186a, 138a 

AgInTe2 
3217.9/ 

2847.8 

1592.9/ 

1480.3 

1788.0/ 

1656.5 
6005.94 

165.87/ 

153.67 

155.9b, 159a, 

113a 

CuAlS2 
6647.3/ 

6105.6 

3458.6/ 

3248.6 

3870.3/ 

3629.7 
3456.74 

435.11/ 

408.07 

308, 372, 375, 

386a 

CuAlSe2 
5117.5/ 

4942.0 

2661.4/ 

2702.3 

2978.3/ 

3013.4 
4787.35 

318.59/ 

322.34 

224a, 272a, 277a, 

294a 

CuAlTe2 
4298.3 / 

3923.9 

2276.8/ 

2112.0 

2544.7/ 

2357.8 
5445.71 

254.52/ 

235.82 

207a, 213a, 303a  

CuGaS2 
5954.8/ 

5366.5 

3139.3/ 

2907.2 

3509.8/ 

3244.1 
4376.49 

393.50/ 

363.71 

356b
, 272a, 320a, 

340a, 347a, 330a, 

338a 

CuGaSe2 
4750.1/ 

4434.2 

2500.2/ 

2482.3 

2795.7/ 

2762.9 
5589.45 

298.66/ 

295.17 

262b, 195a, 246a, 

239a, 258a, 259a, 

288a 

CuGaTe2 
4102.1/ 

3653.5 

2196.8/ 

2027.9 

2453.4/ 

2258.7 
6028.10 

244.16/ 

224.79 

226.2b, 146a, 

177a, 200a, 202a, 

190a 

CuInS2 
5112.5/ 

4620.7 

2531.8/ 

2386.0 

2841.8/ 

2671.3 
4742.69 

305.54/ 

287.22 

273b, 284a, 231a, 

221a, 272a, 264a 

CuInSe2 
4252.1/ 

3787.4 

2135.5/ 

1876.0 

2395.0/ 

2105.7 
5745.07 

246.12/ 

216.39 

243.7b, 221.9d, 

255a, 170a, 172a, 

207a, 219a 

CuInTe2 
3792.9/ 

3122.8 

1937.1/ 

1426.9 

2170.3/ 

1608.2 
6134.71 

209.44/ 

155.20 

191.4b, 185a, 

194a, 129a, 156a, 

174a 
aRef. [241], bRef. [175],  cRef. [106],  dRef. [242] 

 

Considering the substitution of amoms of group III, we can see the tendency that in 

the series Al → Ga → In there is a decrease in ΘD during the transition to a heavier cation 

atom. Substitution of Al to Ga reduces the Debye temperature by 10-40 K a for crystals with 

Cu and for crystals with the Ag cation by 21-26 K. Substitution of Ga → In for crystals in 
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which the cation I = Cu reduces ΘD by 34 -87 K whereas for I = Ag this change is slightly 

smaller and is 39-50 K. Therefore, the transition of the cation of group I from Cu to Ag 

reduces the effect of replacing the components of the cationic sublattice of the sublattice 

formed by Al, Ga and In ions on the Debye temperature. 

Replacement of S → Se → Te also leads to a decrease in the Debye temperature for 

all crystals of group I-III-VI2. As for the replacement of cation III and for inons VI, there is 

less influence on the change of cation of crystals with Ag than for crystals containing the Cu 

cation. 

In [175,241–243], a study of the Debye temperature for the studied group of crystals 

is reported. In particular, in [175] the experimental results of determining the Debye 

temperature are given. Comparing the values of ΘD obtained in this work, we can say that 

they are in good agreement with the literature data. The differences between the data given 

by other authors and our results can be explained by the peculiarities of the methods used. 

In particular, underestimation of bond lengths (in the case of LDA) and their overestimation 

(in calculations with GGA) affect the elastic constants with which ΘD is associated. It should 

also be noted that in these publications [106,175,241,242] there is a large scattering of ΘD 

data. In particular, the data obtained on the experimental ones in [175] differ significantly 

from the others [106,241,242]. Also, in [30] shows the results of the calculation of the 

Debye temperature for crystals AgGaS2, AgGaSe2, AgGaTe2 (not given in the table) which 

are 355 K, 288 K, 241 K, respectively. These values obtained by the FP-LAPW method, as 

can be seen from the table, are significantly overestimated by experimental data. Also, the 

results obtained are in consistancy with the theoretical data reported by A.K. Kushwaha et.al 

[244] obtained with the use of the rigid ion model. 

It should be noted that usually high ΘD indicates high thermal conductivity and strong 

interaction forces strength of atoms. Thus, we can say that the crystals of the group Cu-III-

VI2 has higher thermal conductivity than the Ag-III-VI2 crystals. Also, crystals based on the 

Cu cation have a stronger covalent bond than the Ag-containing chalcopyrites of the study 

group. Replacement of Al → Ga → In cations and an anion substitution S → Se → Te 

reduces the bond strength and covalent component. 
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5.4. Conclusions 

 
1. Calculated are the coefficients of the matrix of elastic constants Cij for 18 crystals of 

I-III-VI2 group. It is shown that the elastic coefficients obtained with the LDA functional are 

greater than that with GGA functional because of overbidding characteristic of the LDA 

functional. The elastic coefficients for all crystals of the studied group satisfy the Born 

criterion of mechanical stability for the tetragonal crystal structure. It is shown that I-III-VI2 

crystals have relatively small elastic coefficients (<100 GPa) and reveal anisotropy. The C11 

and C33 coefficients are the largest by magnitude. The crystals are less compressed along the 

x- and y-directions than in the z-direction. Here, the calculated elastic constants C11 and C33 

for the AgInTe2, CuAlS2, CuAlSe2, CuGaS2 and CuInS2 crystals are almost equal within the 

calculation error. The shear coefficients C12 and C13 are close to each other, showing the 

same interaction in the respective shear directions. It can be seen that the elastic coefficients 

satisfy the following inequality С11> C33> C12> C13> C44> C66. 

2. The calculated linear compressibility coefficients obtained with the GGA functional 

shows higher value of k than obtained with the LDA functional. The compressibility k has 

clear tendency on its composition change. The sawtooth form of compressibility change is 

typical for the I-III-VI2 crystals. The transition from CuAlS2 to AgInTe2 crystal is 

accompanied in general by increasing the k values. The change of all Cu → Ag, Al → Ga 

→ In, and S → Se → Te leads to the increasing of the compressibility. The highest influence 

on the compressibility has the S → Se → Te anion substitution, leading to rapid increase in 

k value. The cation substitution can be described by the smoother change in compressibility. 

3. It was found that the Young's modulus for crystals of I-III-VI2 group in the x-direction is 

greater than in the z-direction indicating that the material is less tensile in the x-direction. 

Calculations show that the CuGaS2 crystal is stiffer than other materials in the studied group. 

The materials containing Te atoms are less stiff. 

4. The bulk modules B and shear modules G for polycrystalline materials are obtained from 

the calculated elastic constants. It was found that the B/G ratio is in the range of 4.12 (3.46) 

to 2.15 (1.86) for LDA (GGA) functional. It is greater than the critical value of 1.75. 

Therefore, the crystals of I-III-VI2 group are characterized by high ductility. 

5. The bulk modulus for all crystals of the studied group is calculated and good agreement 

with the experimental values given in the literature is shown. The functional dependences 

between the bulk modulus B and a number of parameters of the crystal, such as the molar 
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mass of the compound, the volume of the unit cell, the density of the crystal, and the value 

of the band gap are revealed. 

4. A number of parameters characterizing the anisotropy of elastic properties of the 

materials, such as shear anisotropy factors A1, A3, and anisotropy indices AB, AG, AU, are 

calculated. It is shown that the anisotropy of the compression modulus B is small in the 

studied crystals, while the shear anisotropy is significant. 

5. A 3D spatial distributions of the bulk modulus, Young’s modulus and shear modulus of 

I-III-VI2 crystals and their planar projections are constructed. It was found that a significant 

anisotropy is observed for the Young's modulus, which is the largest for crystals with light 

anions. Substitution S → Se → Te leads to decreasing of Young’s modulus anisotropy. It is 

shown that the anisotropy in the (100) plane is greater than in (001). It is found that the bulk 

modulus has a small anisotropy, and the spatial distribution of this modulus has almost a 

spherical shape. When replacing S → Se → Te in crystals containing silver, the figure is 

stretched along the z-direction. In the crystals with the copper ions, on the contrary, the 

sphere is compressed along the z-direction. It is shown that the shear modulus has the largest 

spatial anisotropy and its projections have a flower-like shape. 

6. The propagation velocities of acoustic waves in the crystals of the studied group for 

different directions of propagation are calculated and their anisotropy is estimated. Based on 

these results, Debye temperatures are obtained. A good agreement of the calculated Debye 

temperatures with the experimental data given in the literature is shown. 
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6. STRUCTURE AND DYNAMICS OF PHONON SUBSYSTEM OF 

AgGaX2 (X = S, Se, AND Te) CRYSTALS 

 

 

6.1. Symmetry of phonon modes and selection rules for chalcopyrite 

crystals with the 
12

2dD  space group 

 

6.1.1. Symmetric consideration of crystal structure of I-III-VI2 group crystals 

 

The study of vibrational modes in crystals is of fundamental and practical interest. 

Since vibrational modes are very sensitive to the chemical composition and structural 

perfection of the material, their knowledge allows to ensure quality control of the tested 

samples. 

Group theoretical methods of study are seful and informative tools for analyzing the 

physical properties of crystals. It can be applied to the analysis of fundamental vibrations in 

crystals and allows to define unambiguously number of vibrations and their type of 

symmetry. It provides to analyze the activity of modes and specify the conditions for their 

observation in a particular physical process. These methods are essential for the 

interpretation of experimental results [245]. 

The availability of sensitive equipment and its constant improvement allows you to 

reliably record both single-phonon and multiphon process. Phonons with a very small wave 

vector k (k ⁓ 10–5 cm–1) in comparison with the vector k at the edge of the Brillouin zone (k 

⁓ 10–8) take part in single-phonon processes in the infrared (IR) and Raman spectra. 

Therefore, harmonic processes can be classified assuming that k = 0. In this case, we can 

assume that the equivalent crystal atoms that differ by the primitive translation vector vibrate 

in phase in all primitive cells. This approximation significantly simplifies the analysis of 

phonon spectra in crystals. 

During the vibrational spectra study, the initial stage is the classification of 

fundamental vibrations by types of symmetry in accordance with the symmetry of the crystal 

structure. Two types of structures are considered for which it is expedient to use a certain 

method for classification of vibrational modes. For crystals containing isolated structural 

groups (such as molecules or polyatomic ions) it is convenient to classify the vibrations using 

the method of positional symmetry. For crystals of complex structure that do not contain 
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isolated structural groups, the classification is usually carried out using the general method. 

Isolated structural elements (fragments) cannot be distinguished in the crystal structure I-III-

VI2. Therefore, a variant of the general method [245] is used to classify the vibrational 

modes. 

As a rule, the first-order phonon spectra are of the greatest experimental interest. 

First-order phonon spectra in solids are limited by excitations of vibrational modes close to 

the center of the Brillouin zone. Therefore, the analysis of phonon spectra takes into account 

mainly the Г-point (k = 0), ie knowledge of only the point group of the studied crystals is 

required. It should be noted that for some crystals the phenomenon of autointercalation is 

possible [246] (the formation of superlattices is possible, as a result of which "non-central" 

modes (ie modes for which k ≠ 0) of the original lattice can turn into Г-type modes, which 

can make complicate the structure of new peaks, violation of selection rules). Such processes 

have already been observed in some layered crystals (graphite, PbI2, dichalcogenides of 

transition metals) [247]. 

The Г-point modes of the first Brillouin zone are a type of fundamental normal 

vibrations in which all congruent lattice atoms are shifted in phase and each primitive cell 

participates in the same way. Therefore, to determine and symmetrically classify these 

vibrations, it is sufficient to take as a basis the primitive cell of the crystal. 

Structural studies have shown that tetragonal lattice of chalcopyrite crystals I-III-VI2 

is described by an asymmetric space group of symmetry 
12

2dD  = 42I d  (also known as Vd). 

The parameters of the crystals cell of the studied group vary depending on the elemental 

composition as given (Table 4.1). Lest consider the results of symmetry analysis at normal 

conditions of I-III-VI2 crystals. Symmetry elements of space group 
12

2dD  are following:  

{h1(x, y, z)|(0, 0, 0)};   {h37(y, x, z) |(0, 0.5, 0.25)}; 

{h2(x, –y, –z) |(0, 0.5, 0.25)};  {h38(y, –x, –z) |(0, 0, 0)}; 

{h3(–x, y, –z) |(0, 0.5, 0.25)};  {h39(–y, x, –z) |(0, 0, 0)}; 

{h4(–x, –y, z) |(0, 0, 0)};  {h40(–y, –x, z) |(0, 0.5, 0.25)}, 

where hi the notation of symmetry operations according to [248] and after the vertical line 

are given non-primitive translations. Under the symmetry operation with the designation of 

the form h2(x, –y, –z) means that the transformation under the action of h2 operator the vector 

r = (x, y, z) passes into the vector h2r = (x, –y, –z). The lattice factor group of I-III-VI2 



Structure and dynamics of phonon subsystem of AgGaX2 (X = S, Se, and Te) crystals 

210 | Page 

crystals is isomorphic to a point group D2d whose order is h = 8. The elements of this group, 

in addition to the identical E, are as follows: 

 C2 – 180 degrees rotation along the principal C2 axis; 

 
'

2C  – 180 degrees rotation along the axis perpendicular to C2 axis; 

 σd – reflection in the dihedral plane (a plane which bisects the angle between two 

adjacent 
'

2C  rotation axes; 

 S4 – 90 degrees rotation followed by a reflection thought a plane perpendicular to 

rotation axis. 

There are two 
'

2C  axis which are 90 degrees apart, and two σd dihedral planes and 

two S4 improper axes as rotation either clockwise or anti-clockwise. In the Table 6.1 are 

given the characters of irreducible representations, which shows that the group D2d is not an 

Abelian group (commutative), i.e. contains not only one-dimensional irreducible 

representations. This point group includes 5 irreducible representations, of which 4 are one-

dimensional (A1 = Г1, A2 = Г2, B1 = Г3, B2 = Г4) and one two-dimensional (E = Г5). The 

absence of the center of inversion significantly affects the rules of selection and properties 

of the material and allows the emergence of nonlinear optical phenomena. 

Table 6.1. Character table for the D2d = 42m  point group (tetragonal). 

D2d( 42m ) E 2S4 C2 
'

22C  2σd 
Linear, 

rotations 
Quadratic Cubic 

A1 1 1 1 1 1  x2 + y2, z2 xyz 

A2 1 1 1 –1 –1 Rz — z(x2 – y2) 

B1 1 –1 1 1 –1  x2 – y2 — 

B2 1 –1 1 –1 1 Tz xy z3, z(x2 + y2) 

E 2 0 –2 0 0 
(Tx, Ty), 

(Rx, Ry) 
(xz, yz) 

(xz2, yz2) (xy2, 

x2y) (x3, y3) 

 

The number of fundamental vibrations is determined by the number of atoms in the 

primitive cell. The primitive cell of crystal I-III-VI2 contains N = 8 atoms, so the phonon 

spectrum has 3N = 24 branches. Three of them are acoustic when at k → 0 the frequency is 

ω → 0. The remaining branches are optical. 
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To carry out the theoretical-group symmetric classification of phonon modes, we 

calculated the characteristics of the vibrational representation Гv, as well as the characters of 

the representation Га corresponding to the vibrations of the cell as a whole, using the standard 

method [249]. Since when considering acoustic modes the number of invariant (fixed) 

particles N = 1 (the object is a primitive cell as a whole), the character for the symmetric 

operation R 

( ) 1 2cosθa RR    .     (6.1) 

When calculating the characters of the representation Гv, it is necessary to determine 

a specific number of invariant NR atoms of a primitive (cell) for each operation R and 

multiply it by the corresponding partial contribution coefficient. The results obtained for the 

lattice of crystals I-III-VI2 are given in Table. 6.2. 

As can be seen, the representations of Гv and Гa are reducible. The decomposition 

according to the characters of irreducible representations of the Гi factor group is made 

according to the relations: 

,

1
( ) ( )  a i a i

R

a R R
h

,     (6.2) 

,

1
( ) ( )  v i v i

R

a R R
h

,    (6.3) 

where h(g) is an order of the group, χi is the character of irreducible representation of the 

factor group for the symmetry operator R. 

 

Таble 6.2. Characters of Гv and Гa representation. 

I-III-VI2 E 2S4 C2 
'

22C  2σd 

NR 8 4 4 2 0 

θR 0 90o 180o 180o 180o 

cosθR 1 0 –1 –1 –1 

Гv 1 2 3 4 7 

Гa 0 0 1 0 1 

 

Thus, the theoretical group analysis gives the following classification of vibrational modes 

for lattices of tetragonal chalcopyrites of group I-III-VI2: 
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Гv = 1A1 + 2A2 + 3B1 +4B2 + 7E,    (6.4) 

Гa = 1B2 + 1E,       (6.5) 

Гopt = 1A1 + 2A2 + 3B1 + 3B2 + 6E.    (6.6) 

The three phonon modes B2 and E (mode E is twice degenerate) that correspond to the 

translations TZ, TY, TX are acoustic branches. In other words, representations B2 and E 

correspond to translational (external) modes associated with the displacement of vectors in 

the X, Y, and Z directions. Twenty-one optical modes correspond to representations 

describing sets of normal vibrations from which fully symmetric (1A1), external translation 

(3B2, 6E) and close to libration (2A2, 3B1). 

 

 

6.1.2. Infrared absorption spectra 

 

The types of symmetry of vibrations active in IR spectra and in Raman spectra are 

determined by selection rules established from the constraints imposed by the symmetry of 

the crystal on the matrix elements of the transition from the initial vibrational state to the 

final one under the action of a certain perturbation operator. In IR absorption, this operator 

is a derivative of the dipole moment and is transformed by the vector representation of the 

Гμ factor group, which is isomorphic to the point group of the crystal. In Raman scattering 

we are dealing with a tensor of polarizability (tensor of the second rank), which in the case 

of nonresonant scattering is symmetric and transforms according to the representation of Гα. 

In the language of group theory, the standard selection rules for phonon spectra are 

determined by the symmetric properties of the transformations of the wave functions of the 

initial and final states when applying the symmetry operations of the point group of the 

crystal. Thus, edge transitions will be allowed, and will be written down in the form of 

formulas 

1Г Г Гi   ,      (6.7) 

for IR transitions, and 

1Г Г Гi   ,      (6.8) 

for Raman transitions, were Гi – irreducible representation of factor-group, which 

corresponds to symmetry of phonon wave function of phonon branch ωi(k), Г1 – totally 

symmetric unit representation. 
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The optical mode of Гі symmetry will be active in IR absorption when: 

,

1
( ) ( ) 0   i i

R

a R R
h

,     (6.9) 

where χμ(R) is character of polar vector representation, which are calculated by the 

expression 

( ) 1 2cosθRR    .    (6.10) 

As one can see, Гμ = Га, therefore, in the IR spectra of crystals of group I-III-VI2, odd 

modes are active. Their dipole moments are parallel to three orthogonal crystallographic 

axes. 

If you set the orientation of the fixed ("laboratory") rectangular Cartesian coordinate 

system XYZ relative to the elements of crystal symmetry, eg, X || C2(x) || a, Y || C2(y) || b, 

Z || C2(z) || c then it is possible to determine the general rules of selection taking into account 

the polarizations of both phonon and elementary absorption bands. These general selection 

rules are summarized in Table. 6.3. 

Гμ = 4B2 + 7E.     (6.11) 

Table 6.3. General selection rules for quantum transitions in the tetragonal crystals, 

estimated for the Г-point of BZ. 

Symmetry of states in different 

notations of the irreducible 

representations for D2d group 

Allowed optical quantum transitions 

at Г-point 

Bethe Mulliken E||X, (E||a) E||Y, (E||b) E||Z, (E||c) 

Г1 A1 

Г1 ↔ Г5 

Г2 ↔ Г5 

Г3 ↔ Г5 

Г4 ↔ Г5 

Г1 ↔ Г5 

Г2 ↔ Г5 

Г3 ↔ Г5 

Г4 ↔ Г5 

Г1 ↔ Г4 

Г2 ↔ Г3 

Г3 ↔ Г2 

Г4 ↔ Г1 

Г2 A2 

Г3 B1 

Г4 B2 

Г5 E 

 

 

6.1.3. Raman spectra 

 

When light is scattered, there is a functional relationship between the excitation field 

(e.g., a laser radiation field) and the scattered light field through the response function of the 

medium. In the case of Raman specta is described by a symmetric tensor of the 2nd rank 
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(Raman polarizability tensor). The symmetry of the components of the scattering (Raman) 

tensor depends on the symmetry of the crystal. This determines the selection rules for 

transitions in the Raman spectra. The general form of the Raman tensor is as follows [250]: 

,

, , ,

xx xy xz

i j yx yy yz

i j x y z

zx zy zz



 
 

  
 
 

  

   

  

.    (6.12) 

For tetragonal crystal syngony, the tensor has 6 independent components: three diagonal and 

three non-diagonal. As previously mentioned, single crystals of I-III-VI2 group belong to the 

space group D2d. A set of Raman tensors for 32 crystallographic point groups is collected in 

[245]. The Raman tensors for CP crystals unit cell is shown in Table 6.4. 

Table 6.4. Raman tensors and their symmetries for the D2d point group.  

A1 B1 B2 Ex Ey 

0 0

0 0

0 0

a

a

b

 
 
 
 
 

 

0 0

0 0

0 0 0

c

c

 
 

 
 
 

 

0 0

0 0

0 0 0

d

d

 
 
 
 
 

 

0 0

0 0 0

0 0

e

e

 
 
 
 
 

 

0 0 0

0 0

0 0

f

f

 
 
 
 
 

 

The Raman tensor for modes A1 and B1 has only diagonal terms, so it is difficult to 

distinguish the components of the scattering tensor by choosing the scattering configuration 

for this type of vibrations. For other modes active in Raman spectra (they will be defined 

below), the scattering spectrum will have polarized bands for them. 

The absolute values of the components of the Raman tensor are found by comparing 

the measured intensities with the known cross sections of the Raman for reference materials, 

such as diamond. However, such studies as the definition of signs have not yet been included 

in our task. 

The actually measured value in the experiment is the scattering intensity [251,252]. 

The intensities of the Raman bands are expressed by the formula: 

4
2

0 3

ω
α

4π
R ijI I

c
,    (6.13) 

where І0 is the intesity of the excitation line. For inactive modes, obviously, ІR = 0. As 

mentioned above, the selection rules for the Raman spectra are found by decomposing the 

summary representation of Гα by the nature of the irreducible representations of the Гі factor 

group. A Raman spectra line corresponding to the Гі symmetry mode will be allowed if the 

decomposition coefficient 
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,

1
( ) ( ) 0   i i

R

a R R
h

.     (6.14) 

Characters of Гα representation are found by the formula 

( ) 2cosθ ( 1 2cosθ )R RR    .    (6.15) 

Table 6.5. Characters of Гα representation, χα(R). 

D2d = 42m  E 2S4 C2 
'

22C  2σd 

θR 0 90o 180o 180o 180o 

2cosθR 2 0 –2 –2 –2 

Гα 1 0 3 4 7 

As a result of the decomposition of Гα by the characters of irreducible representations of the 

D2d group we obtain: 

Гα = 1A1 + 3B1 +4B2 + 7E.    (6.16) 

Thus, the six modes in crystals I-III-VI2 are active: А1 modes correspond to nonzero diagonal 

elements of the polarizability tensor, and for modes B1, B2, and E the components αxy, αzx, 

αzx αxz, αzy, αyz are nonzero. In the Raman spectra, the most intense are the bands 

corresponding to fully symmetric A1-type vibrations that are polarized. Other modes allowed 

in the Raman spectra have a lower intensity than the A1 mode. 

The scattering geometry is usually specified in terms of the Porto [253] notation 

ki(eies)ks giving the incoming wave vector ki, incoming polarization ei, scattered wavevector 

ks and polarization es. According to the scheme of Porto notation, for Raman spectra of I-III-

VI2 crystals transitions to states are allowed: 

 A1 in scuttering geometry (XX), (YY), (ZZ);  

 B1 in scuttering geometry (XX), (YY) ;  

 B2 in scuttering geometry (XY), (YX); 

 E1 in scuttering geometry (XZ), (ZX); 

 E2 in scuttering geometry (YZ), (ZY). 

The use of selection rules together with information about the intensities and polarizations 

of bands in first-order phonon spectra makes it possible to identify the structure of these 

spectra. 
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6.2. Vibrational properties of the AgGaS2 crystal 

 

6.2.1. Dynamics of the unit cell from the first principles. Dynamical matrix and 

phonon frequencies  

 

When considering a dynamics of a lattice, the initial element considered in the crystal 

are interparticle interactions, which include ion-ion, ion-electron, electron-electron and other 

interactions that determine the potential energy of interaction between atoms. The minimum 

of the potential energy curve corresponds to the equilibrium value of the distance between 

the atoms. At R > R0 the forces of attraction prevail and at R < R0 the repulsion process is 

observed. The forces acting on an atom are related to the potential energy ratio 

 
d

  grad   
d

U
F U

R R
   

R
r ,    (6.17) 

At small deviations from the equilibrium positions, the energy U(R) can be decomposed into 

a series  

0 0

0

2
2

0 0 02

3
3

03

1
( ) ( ) ( ) ( )

2!

1
( ) ....

3!

R R

R

U U
U R U R R R R R

R R

U
R R

R

   
       

    

 
   

 

  (6.18) 

The second term in the expansion 
U

R




 = 0, while  

2

2

U

R




 > 0. Since at the point of equilibrium 

the repulsive forces change faster than the attraction, the term 
3

3

U

R




 < 0.  In the harmonic 

approximation, the third term, as well as terms of higher orders, is equal to 0, so the force F 

= –

2

2

U

R




corresponds to Hooke's law. In the harmonic approximation, it is also assumed that 

the average distances between adjacent atoms correspond to the minimum of the energy 

curve and are commensurate with the distances of the static crystal model. The atoms 

oscillate relative to the average equilibrium positions, and the amplitude of oscillations is 

small enough to be limited by the quadratic term in the U(R) decomposition. 

Denote the displacement of the nth atom from the equilibrium state by un = R – R0, 

and the total energy of the system by E. Therefore, based on the decomposition of total 

energy near the coordinate of structural equilibrium, Eq. 6.18 takes the following form. 
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2 3
2 3

0 2 3

1 1
. ...

2! 3!

E E E
E E u u u

u u u

  
    

  
.    (6.19) 

Given the harmonic approximation, we write Eq. 6.19 as follows 

, '

0 , , , ' ', ',

1
...

2

k k

k a k aE E        u u ,   (6.20) 

where , ,k au is the atomic displacement k of cell a in the Cartesian direction α, and 
, '

, '

k k

   (а) 

is force constant matrix 

2
, '

, '

, ', '

( )k k

k k

E
a 

 


 

 u u
.    (6.21) 

This matrix represents all effective three-dimensional spring constants between atoms 

, ,

2
, '

, '

, ', ' ', ',

( ) k ak k

k k k a

FE
a 

 

  


   

  

u

u u u
.     (6.22) 

For the three-dimensional case, the solution will have the following form 

, ω

α, , ,ε ki t

k m k e 






qR

q
u .     (6.23) 

Taking the derivative of the equation of total energy to get the force, F and substituting this 

test solution we will get the equation 

, ' 2

, ' , , ,( )ε ω εk k

m k m m kD   
q q q

q ,     (6.24) 

where ω is a frequency; ,εm k q  is phоnon eigen vector. 
, '

, '( )k kD  q  is called a dynamic matrix 

for a system of atoms. It is a Fourier transform matrix of force constants 

, ' , ' , '

, ' , ' , '

' '

1 1
( ) ( ) ( ) aik k k k k k

ak k k k

D C a e
M M M M

     


  

qR
q q ,  (6.25) 

where k and k’ are atom labels, α and α’ are directions. Vibrational frequencies are 

determined from the eigenvalues of the energy hessian E(R), scaled by masses: 

, ' 2

, '

'

1
det ( ) ω 0k k

k kM M
   q .    (6.26) 

The solutions of the Eq. 6.26 are the eigenvalues and eigen functions. Each set of solutions 

corresponds to the vibrational modes. Mode frequency ,ωm q  is the square root of the 

corresponding eigenvalue. 

Today, one of the most popular methods for calculating lattice dynamics is the Linear 

response method [254] of density functional perturbation theory (DFPT).  The Hellmann-

Feynman theorem is used to calculate the first and second derivatives of E(R) [255,256]. 



Structure and dynamics of phonon subsystem of AgGaX2 (X = S, Se, and Te) crystals 

218 | Page 

The force constants matrix can be obtained by differentiating the Hellmann-Feynman forces 

on atoms, with respect to ionic coordinates. As a result, the force acting on the nucleus in 

the electronic ground state will be:   

λ
λ λ

λ λ

dE dH
F

d d
     .    (6.27) 

This procedure reveals that the force constants matrix depends on the ground state 

electron charge density and on its linear response to a distortion of atomic positions. Due to 

the variational principle of the density functional formalism, the second order change in 

energy depends on the first order change in the electron density. 

The DFPT formalism is, in many cases, very similar to the density functional theory 

(DFT) itself. DFT states that the total energy is the functional of the electron density; thus 

one can solve the DFT equations by minimizing the total energy. Similarly, the DFPT 

problem can be solved by minimizing the second order perturbation in the total energy, 

which gives the first order changes in density, wave functions and potential [257,258]. 

The electronic second order energy, which is minimized in this approach, as 

implemented in CASTEP, is: 
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 (6.28) 

where the superscripts refer to the ground state (0) and first (1) and second (2) order changes, 

respectively. Similar terms have to be evaluated for the ionic terms in the total energy. The 

preconditioned conjugate gradients minimization scheme can be used to find the minimum 

of this functional with respect to the first order wave functions. The dynamical matrix for a 

given q is then evaluated from the converged first order wave functions and densities [258]. 

The way to find Фisα,jtβ as a second derivative from total energy is the linear response 

approximation in the density functional perturbation theory. This method is convenient in 

case of mall primitive cells. Now that the matrix of force constants is known, and hence 

Dsα,tβ, then the frequencies ω(q)s can be obtained for any q, and the phonon density can be 

calculated. 

It should be noted that this method is used not only to study the vibrational properties 

of materials. The linear response makes it possible to calculate the second derivative of total 

energy for a given perturbation and, depending on the type of perturbation (its nature), you 

can calculate the following physical properties, and others: 



Structure and dynamics of phonon subsystem of AgGaX2 (X = S, Se, and Te) crystals 

219 | Page 

 perturbation in ionic positions gives the dynamical matrix and phonons; 

 perturbation in magnetic field – NMR response;  

 perturbation in unit cell vectors – elastic constants;  

 perturbation in an electric field – dielectric response. 

 

 

6.2.2. Phonon structure of AgGaS2 crystals 

 

Today, the density functional theory-based methods, designed to describe the ground 

state of a large number of interacting atomic nuclei and electrons that form a crystalline 

solid, is adapted to calculate phonon spectra. This possibility is embedded in the CASTEP 

program code, which we use in this study. The complex problem is solved relatively simply 

by applying the method of linear response, based on the Hellman-Feynman theorem, which 

is implemented to calculate the energy-derived system in the CASTEP code. The essence of 

the approach is that in the framework of the adiabatic approximation (see Chapter 3) when 

calculating phonons, the energy of the ground state of the electronic subsystem is calculated 

as a function of ionic coordinates. Therefore, within the density functional theory is 

developed a method of linear response, based on the theory of static linear response, which 

is adapted in the CASTEP code to find the force constants not as the second derivative of 

the total energy of the electrons of the crystal by nuclear displacements, displacement of 

atoms in the framework of perturbation theory for DFPT [254]. 

The first principles calculations of vibrtational properties of AgGaX2 crystals (X = S, 

Se, and Te) presented in this work were carried out using the plane-waves pseudopotential 

method based on the DFT [18,19]. The calculations are performed using the CASTEP code. 

The LDA functional with the CA-PZ parameterization were used to take into account the 

exchange and correlation effects.  This functional has proven to be good at describing both 

organic and inorganic systems that contain various chemical elements in their structure. 

Also, its advantages include its simplicity, which is manifested in significantly less 

calculation time than for other functionals. The cutoff energy for the plane wave basis was 

fixed at 800 eV. The ion-electron interaction within calculations is modelled by the norm-

conserving pseudopotential. 

Before the calculation, the geometric optimization of the crystal structure was 

performed in order to obtain the structure of the ground state. The BFGS algorithm [155] 
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was used for geometry optimization of the crystal before calculation of the vibrational 

properties. This process implies optimization of the crystal’s unit cell parameters and 

relaxation of the atomic positions. The crystal’s space-group symmetry was constrained 

during the optimization process in order to prevent any structure transformations/distortions. 

For self-consistent electronic minimization, the eigen energy convergence tolerance was 

chosen at 24×107 eV and the tolerance of the electronic total energy convergence was  

10–5 eV/atom. The convergence parameters used during optimization were as follows: the 

maximum force 3×10–2 eV/Å; maximum pressure 5×10–3 GPa and maximum displacement 

1×10–4 Å. The Brillouin zone sampling for calculation was implemented using Monkhorst-

Pack k-mesh [154] with a greed of 5×5×3. The density functional perturbation theory and 

the linear-response approach were used for calculation of the vibrational characteristics 

[254], namely the phonon frequencies, infrared and Raman spectra, phonon band structure 

and phonon density of states. 

Vibrational modes in solids are in the form of waves with frequencies that depend on 

the wave vector (similar to electronic energy levels). The dependences ω(q) are known as 

dispersion curves. Figure 6.1 (a) shows the phonon band structure ω(q) calculated along the 

lines connecting the points of high symmetry of the Brillouin zone. The phonon band 

structure was studied at the following points of the Brillouin zone: Z – Г – X – P – N – Г.  

As you can see, the band diagram consists of 24 branches, which agrees with the number of 

modes obtained from symmetric analysis. Of these, 3 are acoustic branches corresponding 

to the propagation of sound as ω → 0 for q → 0. As can be seen from Figure 6.1 in the 

direction Г – Z degeneration of the two lower TA branches is observed. The remaining 21 

calculated vibrational branches correspond to the optical modes of vibrations. There is an 

insignificant dispersion of phonons, which increases when approaching the center of the 

Brillouin zone. At the Г point it is observed the largest dispersion. Low-frequency optical 

branches interact with acoustic ones. The highest phonon frequency for the AgGaS2 crystal 

is 389 cm–1 on the segment between the Z – Г points. As can be seen from the calculated 

density of states N(ω), Fig. 6.1 (b) They are at point Г from 189.4 cm–1 to 219.5 cm–1 and 

from 255.9 cm–1 to 300.27 cm–1. The frequencies of normal vibrations are given in Table 

6.6. of vibrational properties were done using the primitive cell of the crystals.  

In Fig. 6.2 shows the density of phonon states N(ω) projected on individual atoms 

(partial density of phonon states). As can be seen from Fig. 6.2, the density of states can be 

divided into three sections – low-frequency, medium-frequency, and high-frequency. The 

low-frequency part of the spectrum, which lies in the range of 0-75 cm–1, is formed by silver 
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atoms vibrations. The spectral region from 75 to 190 cm–1, which is the middle region of the 

phonon spectrum, is formed by the vibrational modes of gallium atoms. The high-frequency 

region of spectrum corresponds mainly to the vibrations of sulfur atoms. These results are in 

good agreement with the theoretical calculations performed in [259], which confirms the 

reliability of the results obtained in this work.  
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Figure 6.1. The Phonon dispersion curves ω(q) (a) and the phonon density of states N(ω) 

(b) of silver thiogalate AgGaS2 crystal calculated by the method of linear response using the 

LDA functional. The path is determined in the direction of the Brillouin zone.  
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Figure 6.2. The partial phonon density of states N(ω) of AgGaS2 crystals for Ag, Ga and S 

atoms calculated by the linear response method using the LDA functional. 
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In Fig. 6.3 shows the main atomic displacements for the optical modes of the AgGaS2 

crystal. The Ag, Ga, and S atoms are denoted by blue, brown and yellow balls, respectively. 

Their displacement is shown by green arrows. The lower left corner shows the directions of 

the coordinate system x, y and z, which correspond to the crystallographic axes a, b and c. 

Each block of atoms that makes up a primitive cell, together with arrows indicating the 

direction of displacement of atoms, characterizes the vibrations of one mode. The figure 

shows the types of atomic displacements for the five vibrational modes A1, A2, B1, B2 and E 

of the investigated crystal. The frequency of the corresponding vibration is given in 

parentheses. 

 

A1 (ω = 300.27 cm–1)  A2 (ω = 255.98 cm–1)  E (ω = 100.84 cm–1) 

а)    b)    c) 

        
B1 (ω = 189.44 cm–1)  B2 (ω = 219.41 cm–1) 

d)     e) 

Figure 6.3. Vibrations in the AgGaS2 crystal a) symmetry A1; b) symmetry A2; c) symmetry 

E; d) symmetry B1; e) symmetry B2. Ag atoms are blue, Ga atoms are shown in brown and 

S atoms are yellow balls. 
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Table 6.6. Comparison of the calculated phonon frequencies (in cm−1) at the point Г with 

the experimental spectra of Raman and IR vibrations for the AgGaS2 crystal at room 

temperature. Two frequencies are presented for studies of Raman spectra and IR spectra 

corresponding to LO and TO modes.  

Assignment Activity LDA R exp.a  R exp.b R calc.c ІR exp.d 

A1 R 300.27 295 297.61 297.20 — 

A2 
Silent 255.98 — — 251.51 — 

Silent 356.97 — — 357.91 — 

E 

R, ІR 33.65 84.45 64.8 32.02/31.35 65.06 

R, ІR 100.84 94.5 91.93 102.07/102.07 96.06 

R, ІR 160.90 159.5/160 159.07 166.11/164.11 170.12/157.11 

R, ІR 236.99 224/229.5 225.93 244.83/234.83 227.16/221.15 

R, ІR 324.25 321.5/346 336.07 357.91/325.89 349.24/321.22 

R, ІR 366.43 — 394 380.59/368.92 395.27/367.25 

B1 

R 62.46 54 — 65.04 — 

R 189.44 190.5 126.7 192.80 — 

R 337.81 333.5 177.9 339.56 — 

B2 

R, ІR 67.77 64 — 74.72/74.38 — 

R, ІR 219.41 212/237.5 225.93/208.09 265.85/223.48 244.17/214.15 

R, ІR 365.24 364/398.5 391.48/362.51 386.26/365.92 383.26/365.25 
aRef. [260], bRef. [261], cRef. [259], dRef. [262]. 
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Figure 6.4. Calculated using the LDA functional and experimental [261] Raman spectra for 

the AgGaS2 crystal. 
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Figure 6.5. The calculated IR spectra of the AgGaS2 crystal obtained using the LDA 

functional. 

 

 

 

6.2.3. Infrared and Raman spectra of AgGaS2 crystal 

 

An important information about the vibrational properties of a crystal lattice can be 

obtained from the Raman spectra and infrared spectra. In this work, the IR and Raman 

spectra are calculated under the harmonic approximation, which considers phonon modes as 

independent ones. The Raman intensities are the changes in the polarizability α of the 

material under the action of perturbation of phonon mode R: 

23
ij k

k i j k i j

FE

R G G R G G

 
 

     
,     (6.29) 

where G is the external electric field of perturbation (photon). Details of calculation of the 

IR spectra are presented in [263]. 

Theoretical calculations of Raman spectra for the AgGaS2 crystal are shown in 

Fig. 6.4. The calculated spectra are given for the wavelength of light of the fundamental 

beam incident on the investigated crystal λ = 514.5 nm and for the sample temperature 

T = 300 K. The spectrum was calculated in the frequency range from 0 to 400 cm–1. As can 

be seen, there is a series of peaks in the spectrum, which corresponds to the vibrations of the 

structural elements of the AgGaS2 crystal (Fig. 6.4 curve 1). The most intense peack, as 

predicted from the group analysis theorem, is the band at the frequency of 300.27 cm–1, 
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which corresponds to a totally symmetric vibration of A1 symmetry. All other vibrational 

bands active in the Raman spectra have a much lower peak intensity. To compare the 

calculated Raman spectra with the experiment, in Fig. 6.4 is shown the experimental spectra 

taken from the literature [261] (Curve 2). Comparing the experimental and theoretical curves 

of the Raman spectra, their good agreement can be seen. It should be noted that the most 

intense peak A1 is slightly shifted towards higher frequencies by magnitude Δω ≈ 2.7 cm–1. 

Such a shift was observed by us earlier for the β-LiNH4SO4 crystal [264]. 

The intensity of peaks, which occurs in the IR spectra can also be calculated 

numerically. It can be estimated from the change in the electric dipole moment µ of the 

system with respect to atomic displacement under the phonon mode perturbation R:  

2

i k

k i k i

FE

R G R G

 
 

   
,     (6.30) 

where G is the external electric field of perturbation (photon). Details of calculation of the 

Raman spectra are collected in [263]. 

Figure 6.5 shows the theoretically calculated infrared spectra of the AgGaS2 crystal 

calculated in the frequency range ω = 0 – 400 cm–1. For the IR spectra of the studied 

compound, the highest frequency of the vibrational mode is 365.24 cm–1. The spectrum 

consists of five main peaks. Two peaks at 324.6 cm–1 and 365.6 cm–1 have a high intensity, 

and two peaks at ω = 219.6 cm–1 and 236.6 cm–1 have an intensity of about 1/4 of the intensity 

of the highest peak, as well as one peak at 160.9 cm– 1 with low intensity. The most intense 

peak in this spectrum is at ω = 324.25 cm–1, while the peak of slightly lower intensity is at 

the frequency ω = 365.24 cm–1. 

 

 

6.2.4. Born effective charge tensor and dielectric constants for AgGaS2 crystal 

 

The effective Born charge tensor shows the macroscopic electrical response of the 

crystal to the internal movement of atoms in the crystal. A uniform shift of the cation or 

anion sublattice generates macroscopic polarization, but does not create a macroscopic 

electric field, because the periodicity of the sublattice does not change. These charges make 

it possible to estimate the degree of ionicity of the material, and may be of interest in the 

analysis of LO-TO splitting, and are defined as induced polarization of a solid Pα along the 

α-direction for a unit atom displacement β(τkβ) along the direction belonging to the sublattice 
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k. According to the theory [258,265], the effective Born charges for the center of the 

Brillouin zone are calculated as 

* α
,αβ 0

,β 0

δ

δτ
k q

k E

P
Z





  ,     (6.31) 

where  is the unit cell volume, P is the polarization, and  ,βτк  is displacement of k-th 

atom in the β-direction. Small values of Z* indicate uncorrelated atomic displacement, which 

indicates phase stability. 

To calculate the effective Born charges for the AgGaS2 crystal, we considered 

independent displacements for all Ag, Ga, and S atoms. It was obtained an electronic 

contribution to the change in polarization along each x, y, and z direction. The calculation of 

the dynamic and effective charges of the investigated crystal was performed within the 

standard procedure for calculating its vibrational spectrum using the CASTEP program and 

using DFPT, implemented in it by the linear response method. The calculated Born effective 

charge tensors (Z*) describing the homogeneous shifts of the Ag, Ga, and S sublattices in an 

AgGaS2 crystal, the eigenvalues of the symmetric part Z*(λ), and the dynamic charges Qd, 

which are the mean values of the diagonal elements of this tensor, are presented in Table 

6.7. The tensors of effective charges are given for one Ag atom with position 4a (S4), one 

Ga atom with position 4d (S4) – because the others are equivalent, and for two S atoms with 

position 8d. As can be seen from the table, the tensors are diagonal and almost isotropic. For 

tetragonal crystals, according to its symmetry 
* * *

хх yy zzZ Z Z  . The value 
* */хх zzZ Z  = 1.17 for 

silver atoms; 
* */хх zzZ Z = 0.94 – for gallium atoms. The tensor is almost spherical with a small 

tetragonal curvature, like the crystal structure, due to non-fulfillment of the ratio с/2a = 1. 

Sulfur atoms are located in position 8d with lower symmetry (C2) compared to Ag 

and Ga atoms. Therefore, the symmetry of the tensor Z* is lower for S atom. Anions have 

the following components of the tensor: 
*

, 1.88S zzZ   , whereas 
*

,S ххZ , and also 
*

,S yyZ  = –

1.64 or –2.12, depending on which curvature parameter u. A similar form of the tensor Z* is 

reported for the ZnSnP2 crystal [265]. Also, due to the curvature u along the x or y direction, 

the following non-diagonal components become non-zero: 
*

, 0.73S yzZ   , 
*

, 0.82S zyZ   , 

*

, 0.73S xzZ   , 
*

, 0.82S zxZ   .  

 



Structure and dynamics of phonon subsystem of AgGaX2 (X = S, Se, and Te) crystals 

227 | Page 

Table 6.7. The Born effective charges Z*, the eigenvalues of the symmetric part Z*(λ), and 

the dynamic charges Qd (in units of charge e) calculated for the AgGaS2 crystal. 

Atom Z* Z*(λ) Qd 

Ag 
*

1.10 0.10 0.00

0.10 1.10 0.00

0.00 0.00 0.94

AgZ

 
 

  
 
 

 
1.10

1.10

0.94

 
 
 
 
 

 1.05 

Ga 
*

2.66 0.23 0.00

0.23 2.66 0.00

0.00 0.00 2.82

GaZ

 
 

  
 
 

 
2.66

2.66

2.82

 
 
 
 
 

 2.71 

S1 
*

1

1.64 0.00 0.00

0.00 2.12 0.73

0.00 0.82 1.88

SZ

 
 

   
   

 
1.22

2.78

1.64

 
 
 
  

 –1.88 

S3 
*

3

2.12 0.00 0.73

0.00 1.64 0.00

0.82 0.00 1.88

SZ

 
 

  
  

 
1.22

2.78

1.64

 
 
 
  

 –1.88 

 

The formal charges of the constituent atoms of AgGaS2 crystals are as follows: 

Ag +1; Ga +3; S –2 (in charges e). As can be seen from the table, there is a deviation of the 

dynamic charges relative to the nominal values of free ions 1.047, 2.713, –1.88 for Ag, Ga 

and S atoms, respectively. Deviation from normal charges indicates a dynamic transfer of 

charge between ions. Additionally, such a deviation of charges indicates a relatively strong 

covalent bond between the atoms in this compound. We do not know the literature data on 

the effective charges for the AgGaS2 crystal. 

From the second derivative of the total energy of the system in the electric field, we 

can obtain the dielectric constant of the system ε [266]. If we consider the contribution to 

the energy of the system only from the electronic subsystem Eel, the dielectric response is a 

purely optical tensor of the dielectric susceptibility ε  which can be obtained as follows 

2

αβ αβ

α β

4π
ε δ

ε ε

elE 
 

  
,     (6.32) 

where α and β are the indices of the directions in the Cartesian coordinate system, and   is 

the volume of the primitive cell. Static dielectric constant can be decomposed into different 

modes and calculated by the generalized Lyddane-Sachs-Teller (LST) ratio. 

2

LO,

0 2

TO,

ω
ε ε

ω

m

m m

  ,     (6.33) 



Structure and dynamics of phonon subsystem of AgGaX2 (X = S, Se, and Te) crystals 

228 | Page 

where ωTO,m is the frequency of the transverse optical mode and ωLO,m is the frequency of 

the longitudinal optical mode. This ratio is calculated separately for each polarization. Using 

the DFPT formalism, we calculated the electron ε  and static dielectric permittivity tensors 

ε0 for the crystal under study. According to the symmetry of the crystal, the tensor is diagonal 

with the following components εxx = εyy ≠ εzz. The calculated coefficients of the tensors ε0 

and ε  are given in Table 6.8. Both static and electronic dielectric constants, similarly to 

Born effective charges, have a slight anisotropy (1.03 for ε  and 0.98 for ε0). The 

experimental value of the dielectric constant for the AgGaS2 crystal is equal to 10 [267], 

which agrees well with the average value of the static dielectric function calculated in this 

work, which is equal to 10.095. 

Table 6.8. Static ε0 and electronic ε  dielectric constants were calculated for the AgGaS2 

crystal using the LDA functional. 

αβε
  ε   

ε xx


= ε yy


 7.50 ε xx = ε yy  9.79 

ε zz


 7.31 ε zz  10.04 

ε xx


/ ε zz


 1.03 ε xx / zz  0.98 

 

 

6.3. Vibrational properties of the AgGaSe2 crystal 

 

 

6.3.1. Phonon spectra of AgGaSe2 crystals 

 

For the AgGaSe2 crystal, the calculated dispersion of phonons is shown in Fig. 6.6. 

There are 24 vibrational modes in the vibtrational spectrum. As can be seen from the figure, 

for this crystal there are no negative (imaginary) vibrational frequencies in the calculated 

spectrum, which indicates the stability of the crystal structure. In the Г – Z direction, as for 

the AgGaS2 crystal, degeneration of the two lower TA branches is observed. The three 

acoustic vibrational branches corresponding to the increase of the vibratinal frequency at the 

distance from the center of the Brillouin zone at the frequency ω = 34 cm–1 overlap with the 
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optical modes of oscillation. For the AgGaSe2 crystal, as in AgGaS2, the largest dispersion 

is observed towards the center of the Brillouin zone. In the X – P direction, the dispersion of 

phonons is practically absent (vibration frequencies remain constant). The highest 

vibrational frequency in the crystal is 262 cm–1 near the N point of the Brillouin zone.  
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Figure 6.6. The calculated phonon dispersion curves ω(q) (a) and the phonon density of 

states N(ω) (b) of the AgGaSe2 crystal were calculated by the linear response method using 

the LDA functional. The path is determined in the direction of the first Brillouin zone. The 

symbols are adapted to the symmetry of the active structure. Z (1/2, ½, –1/2), Г (0, 0, 0),  

X(0, 0, 1/2), P(1/4, 1/4, 1/4), N(0, 0.5, 0). 
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Figure 6.7. The partial phonon density of states N(ω) in AgGaSe2 crystals, calculated by the 

linear response method using the LDA functional for Ag, Ga, and Se atoms. 
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Calculated for the AgGaSe2 crystal phonon density of states N(ω) is shown on 

Fig. 6.6 b). The highest bandle of vibrational levels is separated by a range of forbidden 

frequencies, which is in the frequency range from 208 to 242 cm–1. The highest density of 

states corresponds to the bandle of levels with the highest frequencies around 250 cm–1. The 

calculated frequencies of the normal vibrational modes for the AgGaSe2 crystal at Г-point 

are collected in Table 6.9. 

In Fig. 6.7. shows the partial density of vibrational states N(ω) for the AgGaSe2 

crystal for three types of constituent atoms (Ag, Ga, and Se2). A clear intensity distribution 

for individual types of atoms is visible. Similar to AgGaS2 in the AgGaSe2 crystal, the 

density of phonon states can be divided into three sections. The low-frequency region is 

formed by vibrational levels of the silver atom. It lies in the frequency range from 0 to   

75 cm–1. Weak contribution to the vibrational spectrum of silver atoms is in the range from 

0 up to 210 cm–1. You can also observe a slight compression of the vibrational spectrum in 

the direction of lower frequencies compared to the silver thiogalate crystal. The middle 

frequency range is formed by vibrations of gallium atoms with a smaller contribution of 

vibrations of silver atoms. The main contribution of Ga atoms in the middle region of the 

spectrum corresponds to the interval in the spectral region of 127-211 cm–1. The high-

frequency peak with a maximum at 249 cm–1 is formed by a mixture of selenium and gallium 

atom contributions. Thus, the replacement of S → Se leads to compression of a wide band 

of vibrational levels in the high frequency region and the formation of a wide band formed 

by chalcogen atoms with a small contribution of gallium atoms. 

The main atomic displacements for the optical modes of the AgGaSe2 crystal are 

shown in Figs. 6.8. Ag, Ga and Se atoms are marked with blue, brown and yellow balls, 

respectively. Their displacement is shown by green arrows. The lower left corner shows the 

directions of the coordinate system x, y and z which correspond to the crystallographic axes 

a, b and c. Each block of atoms that makes up a primitive cell, together with arrows 

indicating the direction of displacement of atoms, characterizes the vibrations of one mode. 

The figure shows the types of atomic displacements for the five vibrational modes A1, A2, 

B1, B2 and E of the investigated crystal. The frequency of the corresponding vibrations is 

given in parentheses. 
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A1 (ω = 180.53 cm–1)  A2 (ω = 160.82 cm–1)  E (ω = 85.38 cm–1) 

а)    b)    c) 

 

      

B1 (ω = 157.13 cm–1)     B2 (ω = 159.20 cm–1) 

d)      e) 

Figure 6.8. Vibrations in the AgGaSe2 crystal a) symmetry A1; b) symmetry A2; c) Symmetry 

E; d) symmetry B1; e) symmetry B2. Ag atoms are blue, Ga atoms are brown and Se atoms 

are yellow balls. 
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Table 6.9. Comparison of the calculated phonon frequencies (in cm−1) at the point Г with 

the experimental Raman spectra and IR vibrations for the AgGaSe2 crystal at room 

temperature. Two frequencies are presented in some data of studies of Raman spectra and 

IR spectra corresponding to LO and TO modes. 

Mode Activity LDA R еxp.a R еxp.b IR еxp.b 

A1 R 180.53 180 181 — 

A2 
Silent 160.81 159 — — 

Silent 204.89 — — — 

E 

R, ІR 32.50 — –/27 — 

R, ІR 85.38 — 84 (T+L) 80/79 

R, ІR 139.03 136 138/137 137/135 

R, ІR 168.92 276 165/162 165/162.5 

R, ІR 246.15 — –/255 250/251 

R, ІR 250.98 — 277/251 278.5/248 

B1 

R 62.36 56 58 — 

R 157.13 253 161 — 

R 240.64 — 253 — 

B2 

R, ІR 58.06 — 58/– 63/62.5 

R, ІR 159.20 — 161/155 165/– 

R, ІR 246.13 249 275/252 275.5/249.5 

Ref. a [268]; Ref. b [269]; 

 

Using Eq. (6.17), the Raman spectra for the AgGaSe2 crystal were calculated. Figure 

6.9 shows the Raman spectra constructed for the wavelength of light of the fundamental 

beam incident on the investigated crystal λ = 514.5 nm and for temperature T = 300 K. The 

constructed spectrum is given in the frequency range ω = 0 –400 cm–1. The Raman spectrum 

consist of a number of peaks corresponding to the vibrations allowed in the Raman spectrum. 

The Fig. 6.9 shows for comparison the experimental spectra presented in the literature [269] 

(curve 2). The most intense, as predicted by the group-theoretical analysis, is the band of 

vibrations at a frequency ω = 180.53 cm–1. This band corresponds to the totally symmetric 

vibrations of symmetry A1. As for the AgGaS2 crystal, in the AgGaSe2 crystal, the A1 band 

has the highest intensity, while all other bands have a significantly lower. In general, the 

calculated spectrum coincides well with the experimentally obtained results of the Raman 
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spectra study reported in [268,269]. For calculation of the Raman spectra the band that 

corresponds to the irreducible representation A1 has also a small shift to the higher 

frequencies (Δω ≈     2 cm–1). Also, we can see that the experimental curve of the novel 

spectrum contains a peak at the frequency ω = 276 cm–1, which is not active in the theoretical 

spectra (see Fig. 5.9.). 
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Figure 6.9. Calculated using LDA functional, and experimental [269] Raman spectra of 

AgGaSe2 crystal. 
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Figure 6.10. The calculated IR spectra of the AgGaSe2 crystal obtained using the LDA 

functional. 
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From the Eq. 6.18 the infrared spectra was calculated whin the DFPT method. On the 

Fig. 6.10 the theoretically calculated infrared spectra of the AgGaSe2 crystal calculated in 

the frequency range ω = 0 – 400 cm–1 are given. You can see 6 peaks on the spectrum. One 

peak has the highest intensity. Three peaks have a lower intensity and two peaks have a 

lower intensity. For the IR spectra of the test compound, the highest frequency of the 

vibrational mode is ω = 246.49 cm–1. This peak corresponds to the sum of two vibrations of 

E and B2 symmetry. It should be noted that these two high-frequency peaks in the AgGaS2 

crystal are well separated in the infrared spectra. The series of three peaks of lower intensity 

is located at lower frequencies: 168.49, 159.49, 139.49 cm–1, belonging to E, B2, and E 

symmetry, respectivaly. Two peaks (B2 and E symmetry) of low intensity is located at 

ω = 85.19 and 57.49 cm–1. 

 

 

 

6.3.2. Born effective charge tensor and dielectric constants for AgGaSe2 

 

For the AgGaSe2 crystal, the components of the Born efficient charge tensor Z* are 

also calculated. According to the symmetrical crystal structure for the AgGaSe2 crystal, the 

tensor Z* has a same symmetry as AgGaS2 and other crystals of group I-III-VI2. The 

calculated tensors of the effective Born charge for the displacement of Ag, Ga, and Se ions 

are collected in Table 6.10. The table also shows the eigenvalues of the symmetric part Z*(λ) 

and the dynamic charges Qd (in units of charge e) of the AgGaSe2 crystal. 

From the table it can be seen that for Z*-tensor has non-zero off-diagonal elements 

for all constituent atoms in the cell. We can see that the Ag effective charge is higher than 1 

in the x and y directions while for the zz component tensor Z* = 0.82 is smaller. For AgGaSe2 

crystal the Born effective charge is 0.12 e higher than for silver thiogallate crystal. The 

calculated Born effective charge tensors (Eq. 6.1) of the Ga atoms are found to be almost 

diagonal and isotropic. The largest component 
*

zzZ  = 2.66 is also smaller than the nominal 

value 3. In the case of galium we find *

,

1
2.65

3
AgZ
  . 

Selenium atoms, like sulfur for the AgGaS2 crystal, are located at position 8d, so the 

Born effective charge tensor was calculated for Se1 and Se3 atoms. For selenium, we 

obtained the following components of the tensor: 
*

,Se ххZ = 
*

,Se yyZ = –1.75 or –2.24 and 
*

,Se zzZ   
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–1.74. The normal charges of the constituent atoms of AgGaSe2 crystals are as follows: 

Ag +1; Ga +3; Se –2 (in charges e). The observed deviation of the nominal charges for the 

types of atoms forming the AgGaSe2 compound indicates a covalent interaction between the 

constituent atom. This finding is consistent with the observation made in the case of 

AgGaSe2 crystal. As a check of the electroneutrality of the system we verified that the total 

Born effective charge tensor of the unit cell is (almost) vanishing. We find the largest 

component to be 
*

, ,max 0k kk
Z   .  

 

Table 6.10. The Born effective charges Z*, the eigenvalues of the symmetric part Z*(λ), and 

the dynamic charges Qd (in units of e) of the AgGaSe2 crystal. 

Atom Z* Z*(λ) Qd 

Ag 
*

1.35 0.11 0.00

0.11 1.35 0.00

0.00 0.00 0.82

AgZ

 
 

  
 
 

 
1.35

1.35

0.82

 
 
 
 
 

 1.17 

Ga 
*

2.64 0.31 0.00

0.31 2.64 0.00

0.00 0.00 2.66

GaZ

 
 

  
 
 

 
2.64

2.64

2.66

 
 
 
 
 

 2.65 

Se1 
*

1

1.75 0.00 0.00

0.00 2.24 0.55

0.00 0.83 1.74

SeZ

 
 

  
  

 
1.28

2.71

1.75

 
 
 

  

 –1.91 

Se3 
*

3

2.24 0.00 0.55

0.00 1.75 0.00

0.83 0.00 1.74

SeZ

  
 

  
   

 
1.28

2.71

1.75

 
 
 

  

 –1.91 

 

Using equations (6.32) and (6.33), we calculated the high-frequency electron ε  and static 

dielectric constant ε0 for the AgGaSe2 crystal within DFPT. The calculated coefficients of 

the tensors ε0 and are given in Table 6.10. As can be seen from the table, both static and 

optical dielectric steels in the xx = yy direction are greater than the corresponding values for 

the zz direction. For the optical dielectric constant, this behavior correlates with the AgGaS2 

crystal. Both static and electronic dielectric constants, like Born charges, have a slight 

anisotropy (1.23 for ε  and 1.19 for ε0). There is a slight increase in the anisotropy of the 

dielectric constants when replacing the S → Se anion. The ratios of ε0 / ε∞ is equal to the to 

about 1.3. This corresponds to the very low LO – TO splittings. The experimental value of 
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the dielectric constant for the AgGaSe2 crystal is equal to 10.5 for x direction and 12.0 for z 

direction [175]. 

 

Table 6.11. Static ε0 and ε∞ electron dielectric constants calculated for the AgGaSe2 crystal 

using the LDA functional. 

αβε
  αβε   

ε xx


= ε yy


 9.11 ε xx = ε yy  11.62 

ε zz


 7.38 ε zz  9.79 

ε xx


/ ε zz


 1.23 ε xx / ε zz  1.19 

 

 

 

6.4. Vibrational properties of the AgGaTe2 crystal 

 

 

6.4.1. Phonon dispersion of AgGaTe2 crystal 

 

In order to investigate the phonon spectrum of AgGaTe2 crystal we used the linear 

response method in the DFPT approach together with the LDA functional using the similar 

parameters as for the AgGaS2 and AgGaSe2 crystals [165]. Before the calculations, the 

geometry optimization of the crystal model was performed. The phonon band structure ω(q) 

constructed along several lines connecting the high symmetry points Z – Г – X – P – N – Г 

is presented in Fig. 6.11 (a). The figure shows that the longitudinal acoustic (LA) and 

transverse acoustic (TA) branches are linear in the vicinity of the Г-point. There are no 

negative (imaginary) vibrational frequencies for the AgGaTe2 crystal, which indicates the 

stability of lattice to the long-wavelength transverse thermal vibrations. As one can see, from 

the phonon band structure, the two TA branches in Г – Х directions characterized by the 

higher symmetry (the branches are very close to each other) than the corresponding branches 

in AgGaS2 and AgGaSe2 crystals. In the Г – Z direction TA vibrational branches of two 

modes are degenerated. 
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a)       b) 

Figure 6.11. Calculated phonon dispersion ω(q) and phonon density of states for AgGaTe2 

crystal. 

 

Additionally, the phonon density of states N(ω) was obtained by the BZ integration 

of the phonon dispersion relations (Fig. 6.11 (b)). As the feature of the phonon spectrum of 

AgGaTe2 the presence of the forbidden frequency band, previously reported for the CuGaTe2 

crystal [270], should be noted. However, the band gap of the AgGaS2 is much wider than in 

CuGaTe2. Previously, the studies similar to ours were conducted by Yang et. al. [184] using 

the VASP program under DFT-GGA method. The calculated phonon band structure and the 

total density of states are in good agreement with the reported in [184]. Unfortunately, the 

data on the experimental study of inelastic neutron scattering required for comparison with 

the theoretical results obtained in this work is not available up to now. 

Phonon partial density of states N(ω) of AgGaTe2 crystal is is plotted and the 

information of lattice vibrational contribution of each atom to phonon dispersion is shown 

in Fig. 6.12. The figure shows that the vibrational spectrum of the crystal can be divided into 

three separate parts formed by different groups of atoms. The first part, which contains high-

frequency optical modes, is formed mainly by contributions of the Ga atoms vibrations. Here 

the smaller contribution of Te atoms vibration is presented. The second part contains wide 

frequency region starting from the near-gap frequency (170 cm–1) to the low frequency 

vibrations at 70 cm–1. These phonons are formed by the mixed contributions of Ag, Te and 
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Ga atoms. In this region the main contribution is related with the Te atoms vibrations while 

the Ag modes give the lower intensity in the phonon DOS. It should be noted, that gallium 

atoms make a minor contribution to the vibration spectrum at values of the wave number of 

about 60 сm–1. The low frequency spectral range in the N(ω) consist of the Te atoms 

vibration with large contribution of Ag ions vibrations.  In addition, there are some low-

frequency optical phonon modes, which are mixed with acoustic phonon modes. Such a 

mixture of optical and acoustic phonon modes contributes to a decrease in thermal 

conductivity, which, as a result, leads to an increase of the thermoelectric figure of merit ZT. 

Comparing the phonon densities of state for the crystals AgGaX2 (X = S, Se, and Te) one 

can see that the maximal frequencies in the vibrational spectra obeys the following sequence 

max max max

S Se Teω ω ω   for X = S, Se, and Te respectively. 
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Figure 6.12. Calculated projected phonon density of states for AgGaTe2 crystal. 
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A1 (ω = 300.27 cm–1)  A2 (ω = 255.98 cm–1)  E (ω = 100.84 cm–1) 

а)    b)    c) 

 

         

  B1 (ω = 189.44 cm–1)   B2 (ω = 219.41 cm–1) 

d)     e) 

 

Figure 6.13. Vibrations in the AgGaTe2 crystal a) symmetry A1; b) symmetry A2; 

c) symmetry E; d) symmetry B1; e) symmetry B2. Ag atoms are blue, Ga atoms are brown 

and Te atoms are yellow balls. 
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6.4.2. Infrared and Raman spectra of AgGaTe2 crystals 

 

The theoretically calculated in this work Raman and infrared spectra of the AgGaTe2 

crystal are presented in Fig. 6.14 and 6.15. The experimental Raman scattering spectrum for 

the excitation radiation wavelength of 532 nm reported in [271,272] and IR spectrum [271]  

are presented in both figures for comparison. 

The calculated Raman spectrum contains three distinctive non-symmetric peaks. The 

most intensive is at 135 cm–1 and correspond to the A1 mode. This is the mode for which two 

pairs of anions vibrate in the following way: one in the direction of the a-axis and another 

one in the direction of b-axis. The calculated frequency of this mode is shifted for 5 cm–1 

towards the higher frequencies in comparison with experimental value. The calculated peak 

at 209 cm–1 correspond to the B1 mode, and the low-frequency vibration at 62 cm–1 is also 

of B1 symmetry. For the AgGaTe2 crystal, the most intense peak was observed at 135 cm–1 

and also corresponded to the A1 mode. For this crystal, the shift of the peak A1 relative to the 

experimental spectrum was Δω ≈ 6 cm–1 toward higher frequencies, which shows good 

agreement with the experimental spectrum of the novel obtained in [30]. 
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Figure 6.14. Calculated and experimental [30] Raman spectra of AgGaTe2 crystal.  

 

Figure 5.15 shows a diagram of the position of the band in the Raman spectrum for AgGaX2 

crystals (X = S, Se, Te), which is characterized by symmetry A1 whose intensity is the 

highest. For comparison, the diagram shows the position of this mode in the experimental 

spectra of the Raman from [30,261,269]. It can be clearly seen from the diagram that the 

replacement of the anion S → Se → Te leads to a shift of the A1 mode towards lower 
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frequencies. It is known that the vibrational frequency is inversely proportional to mass. This 

change in frequency corresponds to the change in the mass of the corresponding ions (mTe 

(127.6 g / mol)> mSe (78.96 g / mol)> mS (32.065 g / mol)). Also, it is important to note that 

the theoretically calculated frequency shows good agreement with the experimental 

frequency of the corresponding band. The largest deviation from the experiment is 6 cm–1 

for AgGaTe2, while for AgGaS2 the offset is 5 cm–1. This shift is not observed for the 

AgGaSe2 crystal. 
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Figure 6.15. Position of the intensive A1 mode in Raman spectra of AgGaX2 (X = S, Se, 

and Te) crystals with chalcopyrite structure calculated using LDA functional. 
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Figure 6.16. Calculated and experimental infrared spectra of AgGaTe2 crystal.  
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The most intensive IR peak at 209 cm–1 is a superposition of two vibrational modes at 206 

and 207 cm–1, which are of the E and B2 symmetry, respectively. Both the experimental and 

calculated phonon frequencies are summarized in Table 5.12. The overall good agreement 

between calculated and experimental spectra is observed. It should be noted that in order to 

fully identify the vibrational spectrum of the crystal, low-temperature measurements, which 

are not currently known in the literature, should be performed. 

 

Table 6.12. A comparison of calculated phonon frequencies (in cm–1) at the Г point with 

experimental Raman spectra data for AgGaTe2 crystal at room temperature. 

Assignment Activity LDA Ra IRa 

A1 R 135 129 — 

A2 Silent 
129 — — 

146 — — 

E R, IR 

33 — 43 

69 64 62 

123 — 115 

147 — — 

206 201 201 

210 — 205 

B1 R 

62 93 62 

136 152 — 

209 220 — 

B2 R, IR 

59 — 51 

142 142 132 

207 201 201 

aRef. [22] 
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6.4.3. Born effective charge tensor and dielectric constants for AgGaTe2 

 

For the AgGaTe2 crystal, the Born effective charges revealed using Eq. (6.31) are 

summarized in Table 6.13. The averaged Born effective charges of three main polarized 

orientations (xx, yy, and zz) is 1.47 for the Ag atoms in the AgGaTe2 crystals. For silver 

atoms, the anisotropy coefficient of Born effective charges Zxx = yy / Zzz = 1.01, which 

indicates their isotropy. 

Non-diagonal components of the tensor (yx and xy) have small charge values and are 

± 0.19. For gallium atoms, the anisotropy of Born effective charges is Zxx = yy / Zzz = 0.94. 

The largest value of the coefficient of Born effective charge tensor of this atom is 2.63 and 

corresponds to the component of the tensor Zzz. For gallium ions the off-diagonal elements 

yx and xy are slightly higher than for Ag and its value is equal ± 0.36. The dynamic charge 

for this atom is Qd = 2.53. In the case of tellurium atoms, we find *

,

1

3
TeZ
  –1.99 and is 

close to the nominal value of charge (–2) for this ion. The nondiagonal nonzero components 

for Te ion is zy, yz and zx, xz. The components zy and zx are equal to ±0.76, while the yz an 

xz components has a value of charge equal to ±0.73.  

It can be observed that the Ag and Ga Born effective charges Z* of AgGaTe2 crystal 

deviates larger from its nominal charge (1, 3) than that for Te, which demonstrates a stronger 

transferred ability of charges between Ag and Ga. 

It is important to note that for this crystal the condition of electroneutrality is also 

fulfilled, which is expressed in the equality of zero sum of all components of the effective 

Born charges for the AgGaTe2 crystal. 

Figure 6.17 shows the dynamic charges Qd for crystals of the AgGaX2 system (where 

X = S, Se, and Te). The figure shows that the dynamic charges for Ag atoms increase with 

the replacement of the anion S → Se → Te. During the transition from a lighter X atom to a 

heavier chalcogen atom, the Qd charge of the silver atom changes from 1.05 (for the AgGaS2 

crystal) to 1.47 (for the AgGaTe2 crystal). For gallium atoms, the dynamic charge decreases 

monotonically from 2.71 to 2.53 during the transition from the structure with X, which varies 

from S to Se to Te. For chalcogen atoms, as well as for gallium atoms, a decrease in the 

dynamic charge is observed during the transition of a structure with a larger mass of 

chalcogen atom. As one can see, the largest changes in dynamic charge is observed for Ag 

atoms, while for two other species (Ga and X) this change is smaller. 
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Table 6.13. The calculated Born effective charges Z*, the eigenvalues of the symmetric part 

Z*(λ) and the dynamic charges Qd (in units of charge e) of the AgGaSe2 crystal. 

Atom Z* Z*(λ) Qd 

Ag 
*

1.47 0.19 0.00

0.19 1.47 0.00

0.00 0.00 1.46

AgZ

 
 

  
 
 

 
1.47

1.47

1.46

 
 
 
 
 

 1.47 

Ga 
*

2.48 0.36 0.00

0.36 2.48 0.00

0.00 0.00 2.63

GaZ

 
 

  
 
 

 
2.48

2.48

2.63

 
 
 
 
 

 2.53 

Te1 
*

1

1.70 0.00 0.00

0.00 2.25 0.73

0.00 0.76 2.04

TeZ

 
 

  
  

 
1.39

2.90

1.70

 
 
 
  

 –1.99 

Te3 
*

3

2.24 0.00 0.73

0.00 1.70 0.00

0.76 0.00 2.04

TeZ

  
 

  
   

 
1.39

2.89

1.70

 
 
 
  

 –1.99 
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Figure 6.17. Dependence of dynamic charges of atoms on the type of anion in the AgGaX2 

system (X = S, Se, and Te). 

 

In Table 6.14 we collected the high-frequency and static dielectric constant tensor 

elements for AgGaTe2 crystal. For a tetragonal symmetry there are two components for the 

studied crystal. One can see that the static dielectric constants posseces the lower anisotropy 

than the AgGaS2 and AgGaSe2 crystals. The anisotropy of the high-frequency dielectric 
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constants ε xx


/ ε zz


 = 0.48 while for the static dielectric function the ε xx / ε zz  relation is higher 

and has a value 0.8. The ratios of ε0/ε
∞ for the xx = yy and zz are 1.13 and 1.11 respectively. 

This corresponds to the wery low LO – TO splittings. 

 

Table 6.14. Static ε0 and electron ε  dielectric constants were calculated for the AgGaTe2 

crystal using the LDA functional. 

αβε
  αβε   

ε xx


= ε yy


 17.35 ε xx = ε yy  19.62 

ε zz


 22.13 ε zz  24.57 

ε xx


/ ε zz


 0.48 ε xx / ε zz  0.80 

 

Figure 6.18 shows a diagram of dielectric constants for AgGaX2 crystals where the X = S, 

Se, and Te. The figure shows that the replacement of the anion of the chalcogenide S by 

atoms of greater mass in the structure of AgGaX2 leads to an increase in the value of the 

dielectric function. The figure also shows the increase in the anisotropy of both high-

frequency and static dielectric constants with increasing mother anion. This increase in 

anisotropy is well consistent with the lag of anisotropy of elastic constants and optical 

functions of the studied materials (see Chapret 4). It should also be mentioned that the 

dielectric function is inversely proportional to the value of the band gap Eg. 
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Figure 6.18. Dependence of static ε0 а) and electronic ε  b) dielectric constant for 

AgGaX2 (X = S, Se, Te) crystals. 
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6.5. Conclusions 

 

1. In this section, theoretical study of the crystal lattice dynamics for AgGaX2 crystals where 

X = S, Se, and Te is performed. For the studied class of crystals, a symmetric classification 

of vibrational spectra of interest from a fundamental point of view was performed. The 

crystals of I-III-VI2 group have a 
12

2dD  spatial group of symmetry, which is isomorphic to 

the D2d point group with the use of which a symmetric analysis was performed for 

chalcopyrites. 

2. A symmetric classification of vibrational modes for I-III-VI2 crystals is performed. 

Theoretical-group analysis gives 24 vibrational modes in a crystal lattice with a chalcopyrite 

structure. The complete irreducible representation of the vibrational modes for the studied 

group of crystals is as follows Гv = 1A1 + 2A2 + 3B1 +4B2 + 7E. Acoustic vibrations 

correspond to three branches in the spectrum with the representation Гa = 1B2 + 1E, while 

for optical branches the irreducible representation is as follows: Гopt = 1A1 + 2A2 + 3B1 + 3B2 

+ 6E. Obtained are general selection rules for quantum transitions in the tetragonal crystals, 

estimated for the Г-point of BZ. Using the selection rules for IR and Raman spectra, it is 

shown that in the IR spectra the vibrations with the representation Гμ = 4B2 + 7E will be 

active, while for the Raman spectra the irreducible representation has the form Гα = 1A1 + 

3B1 +4B2 + 7E. 

3. The vibrational properties of the AgGaX2 crystals were calculated using the linear 

response method within the density functional perturbation theory approach. Calculations of 

phonon band structures ω(q) and phonon density of states N(ω) were performed. The absence 

of imaginary (negative) vibration frequencies showed that the structure of these crystals is 

stable. For the AgGaX2 crystals (X = S, Se, and Te) one can see that the maximal frequencies 

in the vibrational spectra obey the following sequence 
2 2 2

max max max

AgGaS AgGaSe AgGaTeω ω ω  , which 

indicates the compression of the vibrational spectrum towards lower frequencies when 

replacing S → Se → Te. From the calculations of the phonon spectrum it follows that there 

is a significant anisotropy for low-frequency acoustic branches of vibrations, and the 

presence of low-frequency optical branches that interact with acoustic ones is observed. 

4. It is found that the vibrational spectrum can be divided into three regions: high-frequency, 

medium and low-frequency. The high-frequency region for the AgGaS2 crystal is formed by 

the vibrations of sulfur atoms. The medium frequency region is formed by gallium atoms 

vibrations, while the low-frequency region corresponds to silver atoms. The transition from 
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S to heavier chalcogen atoms shifts the high-frequency region toward lower frequencies with 

an overlap with the middle region. For AgGaTe2 crystal a high-frequency optical modes near 

200 cm–1 are formed by the Ga and Te ions vibrations, while a wide frequency region from 

150 to 0 cm–1 is mainly represented by Ag and Te vibrations. Calculated and identified 

frequencies of vibrational modes in the center of the Brillouin zone (Г-point) showed good 

agreement with the available experimental data on IR and Raman spectra and theoretical 

data of other authors given in the literature. 

5. The Raman intensities and the IR spectrum of AgGaX2 compounds have been calculated. 

It was found that for AgGaX2 crystals the most intense in the Raman spectrum is the peak 

corresponding to the fully symmetric vibration of symmetry A1 The peak is located at ω = 

300.27 cm–1 for AgGaS2, ω = 180.53 cm–1 for AgGaSe2, and ω = 135 cm–1 for AgGaTe2. 

The shift of the intensive A1 mode towards the higher frequencies relatively to the 

experimental peak position is of magnitude Δω ≈ 2.7 cm–1. The calculated theoretical Raman 

spectra showed good agreement with the experimental spectrum reported in the literature. 

An IR spectrum for this crystal was also obtained. The displacement vectors of the atoms 

corresponding to the active in these spectra normal vibrations are constructed. 

6. The components of Born effective charge tensors for individual components of AgGaS2 

and AgGaSe2 crystals atoms are calculated. It is shown that the effective Born charges Z* for 

silver and chalcogen atoms increase with the replacement of the S → Se → Te anions, while 

for the gallium atoms the effective charges increase. The Born effective charges obey the 

summation rule
*

0
k 

  . The calculated high-frequency ε  and dielectric function ε0 

at static limit (ω → 0) in AgGaX2 crystals indicate their insignificant anisotropy. There is a 

tendency to increase in the dielectric constants with increasing anion mass, and there is an 

inverse proportionality to the band gap. 

7. Good agreement between all calculated and corresponding experimental data was 

achieved, which serves as a firm proof of applicability of the used calculation method to the 

studies of anisotropic crystalline materials. 
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7. STUDY OF STRUCTURE AND PROPERTIES OF CuGa(S1–xSex)2 

SOLID SOLUTION  

 

 

 

7.1. Details of calculations and crystal structure analysis 

 

The calculations of the CuGa(S1–xSex)2 solid solution presented in this chapter are 

performed in the frame of the density functional theory (DFT) developed by Kohn and 

Hohenberg [18] and implemented in the CASTEP code [218]. To calculate the band structure 

and physical properties of CuGa(S1–xSex)2 solid solutions the following calculating settings 

were used. The exchange and correlation effects were taken into account as the generalized 

gradient approximation with Perdew-Burke-Ernzerhof [47,137] and the local density 

approximation with Ceperley-Alder and Perdew-Zunger parametrization [47]. The 

pseudopotential method in the basis of the Blokh-type plane waves was used. The maximum 

kinetic energy of the electrons was limited by the cut-off energy of plane waves equal to 

440 eV. The ultrasoft Vanderbilt pseudopotentials were used to describe the ionic core of 

the constituent ions of the crystals. The electronic contributions of the atoms from the deep 

electronic levels near the nucleus were described by pseudopotential, while external valence 

electrons were described explicitly by their wave functions. The electronic configurations of 

valence electrons were as follows: 3d104s1 — Cu; 3d104s24p1 — Ga; 3s23p4 — S; 4s24p4 — 

Se. The integration was performed on a 5×5×3 k-grid chosen by the Monkhrost-Pack method 

[154]. 

The effect of the anion substitution in CuGa(S1-xSex)2 was studied by a partial 

substitution of sulfur ions with selenium ions with x = 0; 0.25; 0.5; 0.75; and 1.0, thus 

forming solid solutions, constructed using the supercell method. When modeling the crystal 

unit cell, its optimization was performed for each solid solution composition. Crystal models 

were optimized at fixed symmetry using the BFGS algorithm [155] by varying the lattice 

parameters and the coordinates of atoms. 

Before calculations of the electronic and optical properties of the crystals the total 

energy convergence test was performed. The convergence parameters were taken as follows: 

self-consistent field tolerance — 10–6 eV/atom; energy — 5×10–6 eV/atom; maximal force 
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— 1×10–2 eV/Å; maximal stress — 2×10–2 GPa; maximal displacement — 5×10–4 Å; energy 

convergence tolerance — 5×10–5eV/atom. 

 

 

 

Figure 7.1. The second and the nearest coordination environment of metal atoms in the 

structure with interionic distances (in Å) for CuGaS2 and CuGaSe2 compounds.  

 

CuGaS2 and CuGaSe2, as other crystals of I-III-VI2 group crystallize in CP structure 

with tetragonal symmetry of unit cell (space group No. 122). The second coordination 

environment of chalcogen atoms in the structure of CuGaS2 (a = 5.3700 Å, c = 10.6433 Å, 

V =306.92 Å3, V/at = 19.18 Å3) [273] and CuGaSe2 (a = 5.6191 Å, c = 11.0260 Å, V = 348.14 

Å3, V/at = 21.76 Å3) [274] crystals with a CuFeS2-type structure, tI16, 122, can be 

represented as the cuboctahedron, the cation atoms in which occupy centers of the tetrahedral 

cavities. The interatomic distances of the cation-anion are presented in Fig. 7.1. 

 For three samples, the CuGaSe0.5S1.5 (prototype – CuFeS2, a = 5.412 Å, c = 10.599 

Å, V = 310.44 Å3, V/atom = 19.40 Å3), CuGaSeS (a = 5.478 Å, c = 10.718 Å, V = 321.63 Å, 

V/atom = 20.10 Å3) and CuGaSe1.5S0.5 (a = 5.551 Å, c = 10.882 Å, V = 335.31 Å, V/atom = 

20.96 Å3) [275], in which are in the range of existence of the continuous series of solid 

solutions CuGa(Se1–xSx)2, the average atomic volume slightly decreases depending on the 

selenium content (Fig. 7.2), which may indicate some interaction of the sulfur and selenium 

sublattices causing an increase in the covalent anion-anion component. 

In this work we use method of modeling the solid solution consisting in changing the 

chemical composition, by partially substitution in specific nodes of the crystallographic 

lattice sulphur for selenium. Such modeling allows one to predict the structural 

characteristics with the change in the percentage of composition. We have performed the 

theoretical study of the CuGa(S1-xSex)2 compounds in the concentration range x = 0–1. This 

allows to evaluate the properties of intermediate compounds in the entire range of possible 
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x values. The simulation of the solid solution was performed using the supercell method 

[176,276] by substituting S with Se in the following way: x =0 (no Se atoms in a unit cell 

with four formula units), 0.25 (two Se and six S atoms), 0.5 (four Se and two S atoms), 0.75 

(six Se and two S atoms), 1 (eight Se atoms).  

 

 

Figure 7.2. Average experimental atomic volume vs selenium content in CuGa(S1–xSex)2 

compounds. 

 

Before calculating the physical properties of the solid solutions, the crystal lattice was 

optimized in each case in order to obtain the equilibrium structure in the ground state 

corresponding to the minimum of its energy by varying the crystal lattice parameters and 

atomic positions with a fixed crystal symmetry. The unit cell parameters calculated in this 

work, as well as available experimental and theoretical parameters of the CuGa(S1–xSex)2 

solid solutions are collected in Table 7.1. The structural parameters of pure CuGaS2 and 

CuGaSe2 crystals, are reported in Refs. [208,273] and [156,274,275], respectively. 

Since both CuGaS2 and CuGaSe2 crystals have the same crystal structure, and the 

gradual anion substitution (S2– with Se2–) does not require the charge compensation, there is 

no reason to expect the change of the crystal structure for the solid solutions. Similar 

assumptions on the structural stability of the solid solutions that are isostructural to the end 

members of the studied series were made in Refs. [277–279].  

As can be seen from Table 7.1, the optimized lattice parameters do not differ 

significantly from the experimental ones. The deviation from the experimental values for 

both a and c parameters does not exceed 1%. It is worth noting that the lattice parameters 

obtained with the LDA functional are reduced compared to the experimental values. This is 
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caused by the overbinding problem of this functional. On the contrary, for the GGA 

functional a slight overestimation of the a and c parameters is observed. Such features are 

typical for the LDA- and GGA-based calculations and has been observed previously for 

other inorganic crystals [172,196]. The parameters calculated in this work are also consistent 

with other theoretical calculations of structural properties of these crystals. 

 

Table 7.1. Experimental and calculated structural data (in Å) for the CuGa(S1–xSex)2 solid 

solutions for x = 0, 0.25, 0.5, 0.75 and 1. 

x 
Experiment 

Calculated (this work) Calculated 

elsewhere GGA LDA 

a c a c a c a c 

0 
5.263a 

5.37b 

10.3786a 

10.64b 
5.37206 10.6376 5.22581 10.3653 

5.3819f 

5.3441g 

5.33h 

10.66f 

10.4538g 

10.47h 

0.25 5.412c 10.599c 5.44455 10.7580 5.30847 10.4910 – – 

0.5 5.478c 10.718c 5.51526 10.8870 5.38374 10.6322 – – 

0.75 5.551c 10.882c 5.58152 11.0244 5.45080 10.7586 – – 

1 
5.607d 

5.619e 

10.990d 

11.026e 
5.64268 11.1422 5.51445 10.8957 5.650i 11.102i 

aRef. [178], bRef. [273], cRef. [275], dRef. [156], eRef. [274], fRef. [167], gRef. [280], hRef. 

[281], iRef. [282] 

 

Fig. 7.3 presents dependence of the lattice parameters of the CuGaS2 – CuGaSe2 

system from the composition of the solid solution. The figure shows that both the lattice 

parameters a and c increase with increasing content of Se ions in CuGa(S1–xSex)2. The 

obtained results are perfectly fitted by a linear function. Such increase in the lattice 

parameters is well known as the Vegard rule [283]. It also correlates well with the increase 

of average ionic radius of the system while substituting S2– (1.84 Å) with Se2– (1.98 Å) [284]. 

The linear fitting functions for the lattice parameters are also given in the figure. 

These equations make it possible to obtain the values of the a and c cell parameters for any 

concentration of Se in the solid solution with x = 0–1. It should be noted that with increasing 

Se concentration the c parameter increases faster than the a-parameter. A similar behavior 

of the lattice parameters during the S → Se substitution was previously reported for  
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CuAl(S1–xSex)2 in Ref. [285]. The Al → Ga replacement, if consider the CuAl(S1–xSex)2 and 

CuGa(S1–xSex)2 solutions, leads to an increase in the rate of c-parameter change, whereas the 

parameter a varies almost equally in both systems. 
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Figure 7.3. Calculated lattice parameters a and c (solid and open symbols for the GGA and 

LDA calculations, respectively) and their linear fits as functions of the Se content x in 

CuGa(S1–xSex)2. 
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Figure 7.4. Experimental and theoretical (LDA and GGA functionals) tetrahedral 

deformation parameter η  as the function of the Se concentration x in CuGa(S1–xSex)2.  
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Fig. 7.4 shows the calculated concentration dependences of the crystal lattice 

deformation degree η(x) for different compositions of CuGa(S1–xSex)2 solid solution. The 

figure shows that η(x) has a minimum, located at a concentration x = 0.68 for LDA and x = 

0.69 for the GGA functionals. These results indicate that for a selenium content of 

approximately x = 0.68, the crystalline structure of the solid solution is of the greatest 

deformation. The obtained values agree well with the value of x = 0.63 we calculated from 

the experimental data on the crystal structure. Thus, the most prominent anisotropic 

properties of CuGa(S1–xSex)2 solid solution are assumed to appear at the content of Se ⁓ 

63 %. The detailed structural information for the optimized solid solutions is given in the 

Appendix 1.  

 

 

7.2. Electronic structure and optical spectra of CuGa(S1–xSex)2 

 

7.2.1. Electronic structure of CuGa(S1–xSex)2 

 

We have calculated the band energy diagram E(k) for the optimized structures of pure 

CuGaS2 and CuGaSe2 crystals corresponding to the extreme concentrations of the solid 

solution. The obtained bandgap Eg for the CuGaS2 crystals is 1.02 / 0.75 eV for the LDA / 

GGA methods (Table 7.2), whereas the experimental value is Eg = 2.45 eV [286]. In the case 

of CuGaSe2 crystals, the calculated Eg value is 0.32 / 0.15 eV for the LDA / GGA methods, 

respectively, while the experimental value is 1.68 eV [287]. 

 

Table 7.2. Calculated and experimental band gap values and corresponding scissor operator 

values for CuGaS2 and CuGaSe2 crystals. 

Crystal Eg, eV (Exp.) Eg, eV (Calc.) Δg ,eV 

CuGaS2 2.45 a 1.02 (LDA) 

0.75 (GGA) 

1.43 

1.70 

CuGaSe2 1.68 b 0.32 (LDA) 

0.15 (GGA) 

1.36 

1.53 

a Ref. [286] b Ref. [287] 
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As can be seen, the calculated band gap values are underestimated. This 

underestimation is a typical drawback of the DFT methods, so the scissor operator Δg is 

usually used to correct the band gap values (see chapter 4). The corresponding corrections 

Δg applied for our calculations using the LDA and GGA functionals are given in Table 7.2 

and were accounted in the construction of E(k) presented in Fig. 7.5. As is easy to notice, 

both crystals have a direct band gap. The top of the valence band and the bottom of the 

conduction band are located at the center of the Brillouin zone (at k = 0) denoted as the  

Г(0, 0, 0)  point. 

  

a)      b) 

Figure 7.5. Calculated band structures of CuGaSe2 (a) and CuGaS2 (b) crystals. The 

coordinates of special points of the Brillouin zone (in units of the reciprocal lattice vectors) 

are as follows: Z(0, 0, ½); A(½, ½, ½); M(½, ½, 0); Г(0, 0, 0); R(0, ½, ½); X(0, ½, 0). 

 

Fig. 7.6 shows the dependence Eg(x) of the band gap on the composition of the 

CuGa(S1–xSex)2 solid solution. This figure is given without considering the scissor operator 

Δg correction. Those data show the underestimation of the bandgap value comparing with 

the experimental data reported in Ref. [288]. As seen from the figure, a monotonous linear 

decrease in the Eg value with increasing Se concentration is observed. Equations describing 

band gap value variation calculated using LDA and GGA methods are shown in the figure. 

It can be seen, that the rate of Eg change with the change in concentration is higher for the 

LDA method than for the GGA. The rates of the band gap value changes for the studied 

system and for CuAl(S1–xSex)2 [285] are summarized in Table 7.3. 
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Table 7.3. The derivative of the band gap vs the concentration of Se ions in CuGa(S1–xSex)2 

(this work) and CuAl(S1–xSex)2 solid solutions. 

Crystal 
dEg/dx, eV 

LDA GGA Exp. 

CuGa(S1-xSex)2 –0.715 –0.603 –0.808b 

CuAl(S1-xSex)2
a  –0.884 –0.826  

 a Ref. [285], bRef. [288] 
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Figure 7.6. Calculated band gaps of the CuGa(S1–xSex)2 compounds and their linear fits. 
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Figure 7.7. Partial density of states of CuGa(S1–xSex)2 chalcopyrite solid solution for a) x = 

0; b) x = 0.5; c) x = 1 calculated using the GGA-PBE functional. 
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Note that for CuGa(S1-xSex)2 the Eg(x) values calculated using two functionals become closer 

to each other with increase of the Se concentration, whereas for CuAl(S1–xSex)2 such 

approximation is observed in the direction of selenium concentration decrease [285]. The 

difference between these two systems is also that in the case of CuGa(S1–xSex)2 there is no 

quadratic dependence reported for CuAl(S1–xSex)2 by calculations using the GGA functional. 

In this regard the studied system reveals a similar linear behavior as reported for          

CuIn(S1–xSex)2 [289]. 

The detailed characteristics of the energy structure can be obtained from the analysis 

of the density of electronic states, which are obtained by integration of the band structure. 

Fig. 7.7 shows the partial densities of electronic states corresponding to different orbital 

momenta (s, p, d) of the CuGa(S1–xSex)2 system with x = 0, 0.5, and 1. The Fermi energy, 

which is matched with the top of valence band, is taken here as 0 eV. As can be seen, the top 

of valence band of the studied solid solutions is formed by the Cu 3d-states, which dominate 

in the upper region of valence band from 0 to –3 eV. For a pure CuGaS2 crystal (x = 0), the 

lower levels of the valence band are formed by the S 3p-states. For the substituted solid 

solutions with concentration 0 < x < 1, this band is formed by a mixture of the 3p S and 4p 

Se states. At the concentration of x = 1 (pure CuGaSe2 crystal), the band with peak at –2 eV 

is formed by the 4p-states of Se. The band at –13 eV is formed by the states of sulfur and 

selenium: 3s S х = 0; 3s S and 4s Se at 0 < x <1 and 4s Se at x = 1. The bottom of the 

conduction band is formed by the 3s-and 3p-states of gallium ions. 

 

 

7.2.2. Optical properties of CuAl(S1–xSex)2 solid solution 

 

The optical properties of solids are described by the dielectric function. The 

calculations of the optical functions were performed in accordance with the methodology 

described in chapter 4.  

The dispersion of real ε1 and imaginary ε2 parts of dielectric functions calculated for 

different compositions of CuGa(S1–xSex)2 are depicted in Fig. 7.8 (only the GGA results are 

shown for the sake of brevity). It should be noted, that the scissor operator Δg was taken into 

account for correcting the calculated results. The tetragonal crystals have two principal 

directions that correspond to the direction along polar Z axis and direction perpendicular to 

Z. The E || Z and E Z notations correspond to the wave polarizations along the (001) and 

(100) or (010) crystallographic directions, respectively. The dielectric function shows 
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insignificant optical anisotropy for the CuGa(S1–xSex)2 solutions. Decreasing of Eg due to the 

increase of Se concentration leads to the expected increase in Re(ε). Such behavior is 

described by the Penn model expressed as  

2

g

p

ε 0   1  ,
ω

E 
    

 

 where ωр is the plasma 

frequency.  
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Figure 7.8. Dielectric functions of CuGa(S1-xSex)2 solid solution calculated using GGA 

functional. a) – Re(ε) for (1,0,0) polarization; b) - Re(ε) for (0,0,1) polarization; c) - Im(ε) 

for (1,0,0) polarization; d) - Im(ε) for (0,0,1) polarization. 

 

Figure 7.9 shows the concentration dependence of the refractive indices of     

CuGa(S1–xSex)2 calculated for λ = 500 nm. The refractive indices increase monotonically 

with increasing percentage of Se content in solid solution for both the a and c principal 

directions and can be quite well described by the linear equations. The equations describing 
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the dependences ni(x) where i = a and c are also shown in Fig. 7.8. The optical anisotropy of 

the solution decreases as the content of Se increases as seen from the tendency for the 

refractive indices na and nc to approach in the Se high-concentration region. A similar 

behavior is reported for the CuAl(S1–xSex)2 crystal [285]. Based on these two systems one 

can conclude that the replacement of the S ions with heavier Se ions leads to the increase of 

the refractive indices of chalcopyrite materials and decrease of their optical birefringence. 

Here we note that the above calculations are carried out for the ideal crystals without taking 

into account impurities and defects (mainly VCu), which can make a significant contribution 

to the optical spectra. It should also be noted that only direct transitions are taken into 

account when calculating ε. 
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Figure 7.9. Refractive index of CuGa(S1–xSex)2 solid solution calculated using GGA 

functional (for 500 nm wavelength). 

 

 

7.3. Elastic and thermodynamic properties 

 

After optimization of the crystal structures for all considered solid solutions their 

elastic constants were calculated. As seen from Table 7.4, all these conditions are fulfilled, 

which allows to make a conclusion about mechanical stability of the considered compounds. 

The calculated bulk moduli for CuGaS2 and CuGaSe2 agree well with available in the 

literature values (we give in Table 7.4 the range of those data reported in different works). 
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Table 7.4. Calculated elastic constants (all in GPa, GGA/LDA results) for the              

CuGa(S1–xSex)2 solid solutions. 

x C11 C33 C44 C66 C12 C13 B B (other data) a 

0.00 
104.79/ 

131.64 

102.90/ 

133.80 

51.29/ 

58.40 

51.49/ 

58.17 

58.70/ 

79.21 

60.10/ 

80.41 

74.47/ 

97.45 

74.6 – 96.0  

0.25 
98.70/ 

122.32 

97.72/ 

118.13 

42.38/ 

54.38 

43.68/ 

53.22 

54.48/ 

71.30 

57.11/ 

73.34 

70.00/ 

88.60 

 

0.50 
95.16/ 

115.92 

89.51/ 

112.54 

43.09/ 

52.36 

35.13/ 

49.35 

51.94/ 

66.51 

52.67/ 

69.02 

65.96/ 

83.93 

 

0.75 
92.09/ 

112.75 

89.74/ 

107.65 

39.98/ 

49.91 

42.30/ 

47.29 

48.44/ 

64.53 

50.29/ 

66.43 

63.44/ 

81.01 

 

1.00 
85.37/ 

105.60 

84.63/ 

103.46 

38.66/ 

47.69 

39.78/ 

46.40 

46.95/ 

61.91 

47.87/ 

62.43 

60.08/ 

76.46 

62.1 – 76.6 

a Refs. [290,291] 

Fig. 7.10 shows variation of the calculated bulk moduli vs anion composition. The 

trend is linear, as might be anticipated from the Vegard’s law. The linear fits equations given 

in the figure allow for estimation of the bulk modulus for the CuGa(S1–xSex)2 solid solutions 

for any value of x.   

 

Figure 7.10. Calculated bulk moduli and their linear fits as functions of the Se content x in 

CuGa(S1–xSex)2. 

 

A further use of the elastic constants can be made to estimate the Debye temperature 

for all studied materials. At first, we calculated based on the Reuss [228] and Voigt [229] 
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approximations the bulk BR (BV) and shear GR (GV) moduli in terms of the elastic constants 

Cij and elastic compliance constants Sij. After these quantities are calculated, the Debye 

temperature ΘD can be found using Eq. 5.40. 

Table 7.5 contains the calculated densities, sound velocities and Debye temperatures 

for all considered solid solutions. Agreement with available in the literature data is good. 

Fig. 7.11 exhibits a linear trend in changes of the Debye temperature with the anion 

composition x, along with the linear fit equations given in the figure. It is seen that the Debye 

temperature is decreased when introducing a heavier Se cation, since the phonon frequencies 

will become smaller in this case. 

Table 7.5. Calculated densities ρ (kg/m3), sound velocities vl, vt, vm (m/s), Debye 

temperatures θD (in K) for the CuGa(S1–xSex)2 solid solutions. 

x 
ρ vl vt vm ΘD 

GGA LDA GGA LDA GGA LDA GGA LDA GGA LDA Exp. 

0.00 4269 4630 5377 5764 2932 3022 3271 3380 364.6 387.1 
286.5a, 

330b 

0.25 4598 4960 4962 5328 2646 2806 2956 3137 325.3 354.1  

0.50 4898 5283 4671 5027 2502 2659 2794 2972 303.7 331.3  

0.75 5177 5562 4504 4811 2451 2541 2734 2841 293.6 312.4  

1.00 5450 5836 4259 4576 2310 2425 2578 2711 273.8 294.6 
239.7a, 

259.0b 

a Ref. [72]; b Ref. [77] 

 

Figure 7.11. Calculated Debye temperatures and their linear fits as functions of the Se 

content x in CuGa(S1-xSex)2.  
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7.4. Conclusions 

 

1. We have modelled and systematically investigated the atomic, electronic, and 

optical properties of CuGa(S1–xSex)2, 0 ≤ x ≤ 1 chalcopyrite solid solutions by means of the 

first-principles (DFT) calculations within the supercell method. The performed calculations 

allowed us to analyze influence of isomorphic anion substitution on the electronic structure 

and optical properties of these compounds.  

2. The obtained optimized structural parameters are in good agreement with the 

experimental values. The linear increase in the lattice parameters with increasing content of 

Se ions satisfying the Vegard’s law is established. The obtained concentration (composition) 

dependence of deformation parameter η(x) reveals the largest deviation from unity at x = 

0.68-0.69 of Se concentration as obtained from calculations and at x = 0.63 as derived from 

experimental data. Thus, the most prominent anisotropic properties of CuGa(S1–xSex)2 solid 

solution is predicted to appear at the content of Se ⁓ 60-70%.  

3. The band structure of the system reveals the direct band gap and large dispersion 

of energy levels. The conduction band bottom as well as the valence band top are located at 

Г-point of the Brillouin zone. It is shown that the replacement S → Se results in the linear 

change of the band gap with concentration change. The calculation of the partial density of 

states allowed us to establish the considerable contribution of electronic states from 

constituent atoms into the formation of energy bands. The direct fundamental absorption 

edge is formed mainly by the transitions from the Cu 3d-states of the valence band top to the 

Ga 3p-states, which form the bottom of the conduction band. The calculated from the band 

structure dielectric functions spectra (ε1 and ε2) show insignificant anisotropy. It is found 

that the S → Se substitution leads to the linear increase in the refractive indices na and nc 

and decrease of birefringence in the Se-rich concentration range.  

4. The complete sets of elastic constants were calculated for all studied solid 

solutions. In addition to that, the Debye temperature was also estimated. It was shown that 

the bulk modulus and Debye temperature vary linearly with the anion composition. The 

results obtained provide important information on the possibility of controlling the physical 

properties by changing the composition in CuGaS2-CuGaSe2 system. The functional 

dependences revealed for CuGa(S1–xSex)2 solid solution offer an opportunity to prepare 

materials with desired properties (lattice parameters, refractive index, birefringence) and 

allow important for band gap engineering linear tuning of the fundamental band gap from a 

pure CuGaS2 (2.45 eV) to a pure CuGaSe2 (1.68 eV).  
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8. CONCLUSIONS 

 

1. The crystal structure of materials of I-III-VI2 group with the structure of chalcopyrite is 

considered and it is shown that the crystals have a tetragonal structure under normal 

conditions. Second coordination environment of chalcogen atoms in the structure of I-III-VI2 

crystals can be represented as a cuboctahedron. The cation atoms occupy the centers of the 

tetrahedral cavities. The analysis of the optimized crystal structure was performed and the 

relative deviation of the unit cell volume dr and the relative mean squared deviation Dr were 

calculated, which showed good agreement with an experiment. An anomalous 

overestimation of the lattice c-parameter for crystals containing silver atoms was revealed 

when using the LDA functional for geometric optimization. A strong negative correlation 

between the tetragonal deformation parameter η of the crystal lattice and the anion shift 

parameter u was obtained. 

2. Regularities of formation of electronic structure of crystals of I-III-VI2 group are 

established. It is shown that all crystals of the studied group are direct-band gap 

semiconductors with extremums of energy branches corresponding to the bottom of the 

conduction band and the top of the valence band in the center of the Brillouin band (point 

Г). It was found that the largest band gap is for I-AlS2 crystals, where I = Cu, Ag. A typical 

underestimation of Eg for LDA and GGA functionals is shown. It was found that, in general, 

the band gap increases with increasing electronegativity of III and VI group ions. It is shown 

that the band gap is inversely proportional to the value of the total molar mass of the 

constituent atoms of the crystal Eg ~ 1/μ and has optimal values for use in photovoltaics as 

an absorbing layer for sunlight. The values of the crystal field energy of the investigated 

crystals were obtained and the decrease of ΔCF with the approaching of the tetragonal 

deformation parameter η of the crystals to 1 was determined. 

3. At energies greater than the band gap, the electronic levels form a wide band consisting 

of wide overlapping bands in which the intensity is much lower than at the valence band 

levels due to the significant dispersion of the electronic levels. It was found that the valence 

band of the studied crystals consists of two subgroups of levels in the range from 0 to –7 eV 

and about –14 eV. For crystals with I = Cu, the top of the valence band is formed by the 

level of 3d states of copper atoms split by the crystal field to two peaks with symmetry t2 

and e. A small contribution of the p-states of the S, Se, Te atoms is also present here. For 
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crystals with I = Ag, the structure of the levels of the top of the valence band does not change, 

but the splitting of the d-levels of silver is not observed. 

4. An incorrect description of localized d-electrons for Ga and In atoms has been revealed, 

which consists in shifting the corresponding band towards higher energies. The example of 

CuGaS2, AgInSe2, CuInSe2, AgGaS2 crystals shows such a shift of localized d-states by 

3.27 eV, 2.72 eV, 2.96 eV, 3.09 eV towards higher energies relative to the experimental 

levels recorded by XPS spectra. It is proposed to use the DFT + U approach to eliminate the 

shortcomings of the standard method using GGA functional. The efficiency of using the 

proposed approach to bring the theoretical data in line with the experimental position of the 

d-electrons of Ga and In atoms bands is shown. 

5. From the band diagrams, the optical functions of the studied crystals were calculated, 

including the dielectric functions ε1, ε2, the reflection spectra R, the refractive index n, the 

extinction coefficient k and the absorption coefficient α. Significant anisotropy of the 

dielectric function is shown. Substitution of S → Se → Te reduces the anisotropy for a 

majority of crystals except CuInX2. 

It is shown that the first peak in the spectrum of the dielectric function corresponds to the 

optical transitions forming the edge of the fundamental absorption and corresponds to the 

transitions between states with symmetry Г4 → Г1 and Г4 → Г1 for E z and E || z, 

respectively. It was found that the replacement of the anion S → Se → Te and the cation 

Al → Ga → In leads to an increase in static dielectric function in the I-III-VI2 system. 

Studied crystals have high absorption coefficients up to 3.5×105 cm–1, which makes them 

promising materials for use in solar energetics in photovoltaic cells as a material for the 

absorbing layer. It is shown that crystals containing copper have better absorption than 

crystals with silver. Using the DES model, the linear electro-optic, electrogyration 

coefficients and second-order nonlinear susceptibility of the AgGaS2 crystal have been 

calculated. 

6. A group-theoretical analysis of the phonon spectrum of AgGaX2 crystals where X = S, 

Se, and Te with the D2d symmetry was performed. The symmetry of the vibrational modes 

of the crystal lattice in the center of the Brillouin zone and the structure of the infrared and 

Raman spectra have been elucidated. Selection rules for optical dipole transitions are 

established. Phonon spectra for AgGaX2 crystals were calculated for the first time. The 

transformation of phonon spectra, effective Born charges and dielectric constants of AgGaX2 

crystals at anionic substitution X = S → Se → Te is shown and analyzed. 
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7. A systematic study of the structural, electronic, optical and elastic properties of the system 

of solid solutions CuGa(S1–xSex)2 in the framework of the density functional theory using the 

supercell method has been performed. It is shown that the replacement S → Se results in the 

linear change in band gap value, allowing the band gap tuning by composition change. The 

linear increase in static refraction indices na and nc and decrease of birefringence with 

increasing the Se concentration is established. The possibility of controlled changes in 

physical parameters in the system by changing the composition of the substitutional solid 

solution is shown. 
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PROSPECTS OF FUTURE STUDY 

 

Given the great interest in materials belonging to group I-III-VI2 and other related 

groups with the structure of chalcopyrite, it seems promising to continue research of such 

materials in the following areas. Investigation of the influence of external fields on the 

structure of materials and physicochemical properties. In particular, the influence of 

hydrostatic, uniaxial and biaxial pressures, the application of electric fields of different 

configurations. Investigation of the influence of defects of different types and 

nonstoichiometry on optoelectronic properties. Study of the influence of the incorporation 

of impurities of elements of rare earth and transition groups on the formation of electronic 

levels in the forbidden zone for use in IMB silar cells and luminescence. Study of surface 

formation for thin-film solar cells. Simulations of nanoparticles and its properties. Modelling 

of solar cells of different configurations and particularly of IMB solar cells.  Optimization 

layers width, their composition, carrier concentration, defects etc. for reaching the higher 

efficiency of solar cells.  
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Figure 2.1. The origin of the binary, ternary and quaternary semiconductors derived from 

the face centered cubic structure of IV-elements. 

Figure 2.2. The wiev of an elementary cell for representatives of some crystalline groups 

derived from the diamond structure: a) face-centered cubic lattice of diamond β-prototype, 

C, b) ZnS – face-centered cubic lattice of sphalerite, (prototype ZnS), c) face-centered 

tetragonal lattice of thiogalate (prototype CdGa2S4), d) body-centered tetragonal lattice of 

chalcopyrite (prototype CuFeS2). 

Figure 2.3. Structure of the chalcopyrite type crystal’s unit cell (a) and the elementary 

morphologically the most important component of diamond-like structures, an irregular 

tetrahedron with shifted by u anion (a common case consisting of an anion C surrounded by 

two cations A and two cations B). 

Figure 2.4. Scheme of chemical bonds formation in АIВIIIСVI
2 compound. 

Figure 2.5. Photograph of synthesized AgGaS2 polycrystal by two temperature vapor 

transport method [11]. 

Figure 2.6. Photos of the grown single crystals of a) AgGaS2, b) CuAlS2, c) AgAlS2 

chalcopyrite semiconductors reported in [11,13]. 

Figure 2.7. Band structure of the AgGaS2 a), AgGaSe2 b), and AgGaTe2 c) crystals. 

Figure 2.8. The band structures of CuAlTe2 and AgAlTe2 demonstrate that both of them 

have a direct fundamental band gap at the Г-point. 

Figure 2.9. The angular-momentum resolved density of states of CuAlTe2 (a) and AgAlTe2 

(b), which are scaled by 1/(2l + 1) in order to better visualize the contributions from the 

different orbitals. 

Figure 2.10. Band structure for the CuAlX2 (X = S, Se, Te) compounds calculated using the 

WIEN2k package with LDA functional. 

Figure 2.11. Total density of states (states /eV unit cell), along with Cu s/p/d, X-s/p, and Al 

s/p partial densities of states for: CuAlS2 (form a to c); CuAlSe2 (from d to f); CuAlTe2 (from 

g to i). 

Figure 2.12. Solid lines are experimental XPS spectra of the valence band in In2Se3 (a), 

CuIn5Se8 (b), CuIn3Se5 (c), and CuInSe2 (d): dependence of the photoelectron intensity I(E) 

on the binding energy E. Dotted lines are the calculated total DOS, presented with a 0.3 eV 

Lorentzian broadening and where the energy scale refers to the valence band maximum. 
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Figure 2.13. XPS data for CuGaS2 with identified critical levels in conduction and valence 

bands. The Ga 3d core levels are roughly –19 eV below the top of the valence band V0 The 

state V5 is attributed to sulfur 3s core states. V4 probably identies s-states centered on the 

cations and V1 and V2 are predominately Cu 3d in character. 

Figure 2.14. XPS data for CuInSe2 with identified or inferred critical levels in conduction 

and valence bands. The In 4d-core levels are roughly –17.6 eV below the top of the valence 

band V0. The state V5 is attributed to Se 4s-core states. V4 probably identifies s-states centered 

on the cations and states V1, 2 are predominately hybridized Cu 3d-states. 

Figure 2.15. Experimantal XPS data for AgInSe2 chalcopyrite. The Ag 4d spin-orbit 

splitting is not resolved but the splitting is seen for the In 4d-core states.  

Figure 2.16. Scheme for organizing nonlinear optical applications [103]. 

Figure 2.17. (a). SEM image acquired on a cross-section of the solar cell. (b). EBSD pattern 

quality map taken from the same area [122]. 

Figure 2.18. EDX elemental distribution maps acquired on the cross-section of the sample. 

(a) Elemental distribution profiles of Cu, In, Ga and S extracted from the elemental 

distribution maps. (b) the absorber layer depth, measured at the same area [122]. 

Figure 2.19. (a) Comparison of the experimental external quantum efficiency of the 12.8 % 

and the 12.6 % efficient best solar cells. (b) Simulated external quantum efficiencies of the 

12.8 % and 12.6 % efficient solar cells [122]. 

Figure 2.20. Short-current density (a), open-circuit voltage (b), conversion efficiency (c), 

and fill factor (d) as a function of MgF2 ARC layer thickness with and without defects. 

Figure 2.21. Current density J vs anode voltage for CIGS based solar cell. 

Figure 2.22. Variation in solar cell parameters influenced by carrier concentration of 

absorber layer (a), and I-V curve of the CIAS solar cell as a function of carrier concentration 

(b).  

Figure 2.23. Schematic structure of an AgInTe2/CdTe solar cell. 

Figure 2.24. Effect of various thickness of AgInTe2 absorber layer (a) and of CdTe buffer 

layer (b). 

Figure 2.25. Effect of various doping of AgInTe2 absorber layer (a), and of CdTe buffer 

layer (b). 

Figure 3.1. Schematic representation of the self-consistent loop used in DFT calculations 

for Kohn-Sham equations solution. 

Figure 3.2. The general classification of the XC functional used in DFT. 
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Figure 3.3. Schematic illustration of exact all electron (blue lines) and pseudopotential (red 

lines) and their corresponding wave functions inside and outside the core region of an atom 

at position r. The cut-off radius at which the all electron potential and pseudopotential values 

match is denoted as rc. 

Figure 3.4. Schematic representation of the frozen core and valence electrons for the 

construction of a pseudopotential of carbon atom.  

Figure 3.5. Schematic representation of the cutoff energy concept. 

Figure 4.1. Structure of I-III-VI2 group crystals, where  – atom I;  – atom III; 

  – atom VI: a) crystal unit cell; b) primitive cell. 

Figure 4.2. Calculated parameter of relative deviation of the unit cell volume dr, and relative 

root mean squared deviation Dr calculated for I-III-VI2 crystals. 

Figure 4.3. Correlation of u with η distortion parameters obtained from experimental, LDA 

and GGA calculated crystal structure. 

Figure 4.4. Welkers’s diagram for AIBIIIC2
VI (A = Ag, Cu, B = Al, Ga, In, C = S, Se, and 

Te). 

Figure 4.5. The first Brilluoin zone structure for unit cell (a) and primitive cell (b) of the 

chalcopyrite I-III-VI2 group crystals. 

Figure 4.6. Band structure of AgBC2 (B = Al, Ga, and In; C = S, Se, and Te) crystals 

calculated using GGA functional a) AgAlS2; b) AgAlSe2; c) AgAlTe2; d) AgGaS2; 

e) AgGaSe2; f) AgGaTe2; g) AgInS2; h) AgInSe2; i) AgInTe2. 

Figure 4.7. Band structure of CuBC2 (B = Al, Ga, and In; C = S, Se, and Te) crystals 

calculated using GGA functional a) AgAlS2; b) AgAlSe2; c) CuAlTe2; d) CuGaS2;  

e) CuGaSe2; f) CuGaTe2; g) CuInS2; h) CuInSe2; i) CuInTe2. 

Figure 4.8. The band gap values of the I-III-VI2 group crystals calculated using the LDA 

and GGA functionals. 

Figure 4.9. Comparison between experimental and DFT calculated band gaps of I-III-VI2 

chalcopyrites.  

Figure 4.10. The molar mass dependence of the band gap value for I-III-VI2 crystals. 

Figure 4.11. Schematic visualization of band edges at Г point of Brilluoin zone for the zinc-

blende and chalcopyrite compounds without spin-orbit splitting of levels.  

Figure 4.12. Schematic representation of the conduction bands minima for two different 

effective masses m*a) and origin of effective mass for electron and hole b). 

Figure 4.13. Total and partial density of stated of ABC2 (A = Cu, Ag, B = Al, Ga, and In; 

C = S, Se, and Te) crystals calculated using GGA functional a) CuAlS2; b) CuAlSe2; 
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c) CuAlTe2; d) CuGaS2; e) CuGaSe2; f) CuGaTe2; g) CuInS2; h) CuInSe2; i) CuInTe2, 

j) AgAlS2; k) AgAlSe2; l) AgAlTe2; m) AgGaS2; n) AgGaSe2; o) AgGaTe2; p) AgInS2; 

q) AgInSe2; r) AgInTe2. 

Figure 4.14. Dispersion of the real ε1(ω) and imaginary ε2(ω) part of dielectric function of 

I-III-VI2 crystals calculated using GGA functionals. 

Figure 4.15. The real (a) and imaginary (b) parts of the dielectric functions of the AgGaTe2 

semiconductor obtained using GGA (PBE) calculations (narrow line). The bold line present 

results of ellipsometry measurements [199]. 

Figure 4.16. The reflectance R, absorption coefficient α, refractive index n and extinction 

coefficient k of I-III-VI2 crystals calculated using the GGA functional.  

Figure 4.17. Contour plot of the calculated optical rotation (solid lines), mean refractive 

index (dashdotted lines) and linear birefringence (dotted lines) for AgGaS2 crystals 

(α'Ga = 0.010 Å3). 

Figure 4.18. Calculated densities of state for AgGaS2, AgInSe2, CuGaS2, та CuInSe2 

crystals together with the experimental XPS spectra taken from literature [29,60]. 

Figure 4.19. (a) Calculated electronic band structure using GGA+U method, (b) Partial 

density of states and (c) Total density of states (DOS) calculated using GGA+U approach 

and comparison of experimental XPS spectrum of MnV2O6 crystal. 

Figure 4.20. Calculated density of state for AgGaS2, AgInSe2, CuGaS2, та CuInSe2 crystals 

with using different values of Hubbard parameter U, together with the experimental XPS 

spectra taken from literature [29,60]. 

Figure 5.1. Determination of stress components ij and strains εij on the faces of a unit cube:  

(a) Stress notation; (b) Strain notation. 

Figure 5.2. The linear compressibility ka, kc, and k of I-III-VI2 group crystals calculated with 

using the LDA and GGA functionals. 

Figure 5.3. Comparison between experimental and DFT calculated bulk modulus of 

I-III-VI2 chalcopyrites for LDA and GGA functionals. 

Figure 5.4.  Regression plot of (a) Bulk modulus B (GPa) versus molar mass M for I-III-VI2 

compounds for a) LDA and b) GGA calculation. 

Figure 5.5. The volume dependence of bulk modulus B for LDA and GGA calculated (a) 

and experimental (b) results. 

Figure 5.6. The density dependence of bulk modulus B for LDA and GGA calculated (a) 

and experimental (b) results. 

Figure 5.7. Bulk modulus as function of band gap value for LDA and GGA functionals. 
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Figure 5.8. Calculated shear anisotropy factors A1 and A2 for I-III-VI2 crystals with LDA 

functional. 

Figure 5.9. Calculated shear anisotropy factors A1 and A2 for I-III-VI2 crystals with GGA 

functional. 

Figure 5.10. Calculated bulk anisotropy index AB (in %) calculated for I-III-VI2 group 

crystals with LDA and GGA functionals. 

Figure 5.11. Calculated shear anisotropy index AG (in %) calculated for I-III-VI2 group 

crystals with LDA and GGA functionals. 

Figure 5.12. Calculated universal anisotropy index AU calculated for I-III-VI2 group crystals 

with LDA and GGA functionals. 

Figure 5.13. Coordinates system and Eulerian angles. 

Figure 5.14. 3D surface representation of Young’s modulus (a), (100) and (001) planar 

projections of the Young’s modulus (b), of I-III-VI2 group crystals plotted for the GGA-

calculated elastic compliance coefficients. 

Figure 5.15. 3D surface representation of the bulk modulus B (a), (100) and (001) planar 

projections of the bulk modulus B (b) of I-III-VI2 crystal plotted for the GGA-calculated 

elastic compliance. 

Figure 5.16. 3D surface representation of the shear modulus G (a), the (100) and (001) 

planar projections of the shear modulus (b), of I-III-VI2 crystal plotted for the GGA-

calculated elastic compliance. 

Figure 5.17. The average sound velocities vm in the [100], [110], and [001] directions of 

I-III-VI2 group crystals. 

Figure 6.1. The Phonon dispersion curves ω(q) (a) and the phonon density of states N(ω) 

(b) of silver thiogalate AgGaS2 crystal calculated by the method of linear response using the 

LDA functional. The path is determined in the direction of the Brillouin zone. 

Figure 6.2. The partial phonon density of states N(ω) of AgGaS2 crystals for Ag, Ga and S 

atoms calculated by the linear response method using the LDA functional. 

Figure 6.3. Vibrations in the AgGaS2 crystal a) symmetry A1; b) symmetry A2; c) symmetry 

E; d) symmetry B1; e) symmetry B2. Ag atoms are blue, Ga atoms are shown in brown and 

S atoms are yellow balls. 

Figure 6.4. Calculated using the LDA functional and experimental [261] Raman spectra for 

the AgGaS2 crystal. 

Figure 6.5. The calculated IR spectra of the AgGaS2 crystal obtained using the LDA 

functional. 
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Figure 6.6. The calculated phonon dispersion curves ω(q) (a) and the phonon density of 

states N(ω) (b) of the AgGaSe2 crystal were calculated by the linear response method using 

the LDA functional. The path is determined in the direction of the first Brillouin zone. The 

symbols are adapted to the symmetry of the active structure. Z (1/2, ½, –1/2), Г (0, 0, 0),  

X(0, 0, 1/2), P(1/4, 1/4, 1/4), N(0, 0.5, 0). 

Figure 6.7. The partial phonon density of states N(ω) in AgGaSe2 crystals, calculated by the 

linear response method using the LDA functional for Ag, Ga, and Se atoms. 

Figure 6.8. Vibrations in the AgGaSe2 crystal a) symmetry A1; b) symmetry A2; c) 

Symmetry E; d) symmetry B1; e) symmetry B2. Ag atoms are blue, Ga atoms are brown and 

Se atoms are yellow balls. 

Figure 6.9. Calculated using LDA functional, and experimental [269] Raman spectra of 

AgGaSe2 crystal. 

Figure 6.10. The calculated IR spectra of the AgGaSe2 crystal obtained using the LDA 

functional. 

Figure 6.11. Calculated phonon dispersion ω(q) and phonon density of states for AgGaTe2 

crystal. 

Figure 6.12. Calculated projected phonon density of states for AgGaTe2 crystal. 

Figure 6.13. Vibrations in the AgGaTe2 crystal a) symmetry A1; b) symmetry A2; 

c) symmetry E; d) symmetry B1; e) symmetry B2. Ag atoms are blue, Ga atoms are brown 

and Te atoms are yellow balls. 

Figure 6.14. Calculated and experimental [30] Raman spectra of AgGaTe2 crystal.  

Figure 6.15. Position of the intensive A1 mode in Raman spectra of AgGaX2 (X = S, Se, and 

Te) crystals with chalcopyrite structure calculated using LDA functional. 

Figure 6.16. Calculated and experimental infrared spectra of AgGaTe2 crystal.  

Figure 6.17. Dependence of dynamic charges of atoms on the type of anion in the AgGaX2 

system (X = S, Se, and Te). 

Figure 6.18. Dependence of static ε0 а) and electronic ε  b) dielectric constant for AgGaX2 

(X = S, Se, Te) crystals. 

Figure 7.1. The second and the nearest coordination environment of metal atoms in the 

structure with interionic distances (in Å) for CuGaS2 and CuGaSe2 compounds.  

Figure 7.2. Average experimental atomic volume vs selenium content in CuGa(S1–xSex)2 

compounds. 
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Figure 7.3. Calculated lattice parameters a and c (solid and open symbols for the GGA and 

LDA calculations, respectively) and their linear fits as functions of the Se content x in 

CuGa(S1–xSex)2. 

Figure 7.4. Experimental and theoretical (LDA and GGA functionals) tetrahedral 

deformation parameter η  as the function of the Se concentration x in CuGa(S1–xSex)2.  

Figure 7.5. Calculated band structures of CuGaSe2 (a) and CuGaS2 (b) crystals. The 

coordinates of special points of the Brillouin zone (in units of the reciprocal lattice vectors) 
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Appendix 1 

Atomic coordinates of CuGa(S1–xSex)2 solid solutions of different composition 

X = 0 

 

 

X = 0.25 

 GGA LDA 

a, Å 5.444551 5.30847 

c, Å 10.758033 10.4910 

c/a 1.97592 1.97627 

V, Å3 319.19 296.0302 

Atom x y z x y z 

Cu1 -0.00084 0.00025 0.00001 -0.00336 -0.00261 -0.00004 

Cu2 0.48000 0.50038 0.49987 0.49938 0.52688 0.50023 

Cu3 0.48983 0.01092 0.75696 0.51374 -0.01545 0.76140 

Cu4 0.00963 0.51110 0.24315 0.01077 0.51243 0.23856 

Ga1 0.50159 0.49924 -0.00001 0.49659 0.49647 0.00000 

Ga2 0.01349 -0.00011 0.50001 -0.00033 -0.01131 0.49996 

Ga3 0.00569 0.49281 0.75537 -0.00529 0.50123 0.75487 

Ga4 0.49452 -0.00690 0.24447 0.49116 -0.00473 0.24514 

S1 0.24795 0.25014 0.12198 0.24196 0.24713 0.12120 

S2 0.75080 0.74892 0.12182 0.74876 0.74986 0.12155 

S3 0.25628 0.25001 0.62779 0.24731 0.75289 0.87844 

S4 0.25116 0.74924 0.87814 0.25006 0.75382 0.87876 

S5 0.74999 0.24640 0.87803 0.75305 0.25703 0.87884 

S6 0.25077 0.74630 0.37200 0.25307 0.74999 0.37113 

Se1 0.75058 0.25217 0.37284 0.73473 0.24687 0.37164 

Se2 0.74856 0.74914 0.62758 0.75021 0.73879 0.62851 

 

 

 

 GGA LDA 

a, Å 5.37206 5.22581 

c, Å 10.6376 10.3653 

c/a 1.9801 1.9834 

V, Å3 306.99 283.07 

Atom x y z x y z 

Cu 0 0 0 0 0 0 

Ga 0.5 0.5 0 0.5 0.5 0 

S 0.248169 0.25 0.125 0.244399 0.25 0.125 
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X = 0.5 

 GGA LDA 

a, Å 5.515261 5.38374 

c, Å 10.887034 10.6322 

c/a 1.97398 1.97487 

V, Å3 331.162690 308.1689 

Atom x y z x y z 

Cu1 -0.025970 0.00007 0.000007 -0.02462 -0.00283 0.000001 

Cu2 0.48110 0.49995 0.50003 0.47493 0.49717 0.500004 

Cu3 0.49747 0.01939 0.75111 0.50301 0.02484 0.74992 

Cu4 0.00298 0.51949 0.24908 0.00264 0.52483 0.25009 

Ga1 0.51886 0.49806 0.000058 0.51449 0.49588 0.00003 

Ga2 0.01326 -0.00173 0.49992 0.01479 -0.00411 0.50003 

Ga3 0.0047 0.48652 0.75068 0.0039 0.48535 0.74996 

Ga4 0.49912 -0.01359 0.24912 0.50433 -0.01461 0.25011 

S1 0.75398 0.74829 0.12578 0.75592 0.74704 0.12475 

S2 0.25452 0.24854 0.62476 0.25587 0.24707 0.62483 

S3 0.75124 0.24652 0.87392 0.75294 0.24406 0.87483 

S4 0.2516 0.74582 0.37495 0.25295 0.74415 0.37475 

Se1 0.24798 0.24905 0.12147 0.24155 0.24714 0.12533 

Se2 0.25014 0.75181 0.87880 0.25290 0.75844 0.87501 

Se3 0.75084 0.25223 0.37373 0.75287 0.25850 0.37535 

Se4 0.74816 0.74957 0.62659 0.74151 0.74708 0.62501 

 

X = 0.75 

 GGA LDA 

a, Å 5.58152 5.45080 

c, Å 11.0244 10.7586 

c/a 1.97516 1.97376 

V, Å3 343.556 319.823 

Atom x y z x y z 

Cu1 -0.00037 0.00004 0.00002 -0.02741 -0.00054 -0.00033 

Cu2 0.48025 0.49976 0.49970 0.50170 0.49602 0.50003 

Cu3 0.48915 0.01135 0.74361 0.51850 0.01416 0.76229 

Cu4 0.01177 0.51160 0.25674 -0.01292 0.51096 0.23781 

Ga1 0.50248 0.49921 -0.00002 0.50864 0.50023 0.00009 

Ga2 0.00946 -0.00145 0.50018 0.00437 -0.00447 0.50003 

Ga3 0.00809 0.49188 0.74535 -0.00132 0.49513 0.75426 

Ga4 0.49510 -0.00849 0.25445 0.50581 -0.00912 0.24564 

S1 0.75272 0.74861 0.12181 0.75229 0.75058 0.12088 

S2 0.75090 0.24916 0.87803 0.75447 0.25293 0.87929 

Se1 0.24763 0.24965 0.12623 0.24193 0.24561 0.12160 

Se2 0.25260 0.24943 0.12610 0.26234 0.24520 0.12094 

Se3 0.25030 0.75149 0.87411 0.24956 0.76300 0.87829 

Se4 0.75028 0.25157 0.37580 0.75454 0.25680 0.37145 

Se5 0.25056 0.74647 0.37339 0.24925 0.73284 0.37086 

Se6 0.74913 0.74938 0.62442 0.73826 0.75066 0.62866 
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X = 1 

 GGA LDA 

a, Å 5.64268 5.51445 

c, Å 11.1422 10.8957 

c/a 1.9746 1.9758 

V, Å3 354.76 331.328 

Atom x y z x y z 

Cu 0 0 0 0 0 0 

Ga 0.5 0.5 0 0.5 0.5 0 

Se 0.251831 0.25 0.125 0.251831 0.25 0.125 

 

 

 

 

 




